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Abstract
We present a semi-supervised, language- and domain-independent approach to high preci-

sion sentence alignment. The key idea is to bootstrap a supervised discriminative learner from
wood-standard alignments, i.e. alignments that have been automatically generated by state-of-
the-art sentence alignment tools. We deploy 3 different unsupervised sentence aligners (Opus,
Hunalign, Gargantua) and 2 different datasets (movie subtitles and novels) and show experi-
mentally that bootstrapping consistently improves precision significantly such that, with one
exception, we obtain an overall gain in F-score.

1. Introduction

Parallel text is a crucial resource for current approaches to statistical machine trans-
lation (Koehn, 2010), statistical models of cross-language information retrieval (Xu
et al., 2001; Kraaij et al., 2003; Gao et al., 2006), or other natural language process-
ing tasks that deploy bilingual texts, e.g. monolingual paraphrasing (Bannard and
Callison-Burch, 2005).

However, one-to-one sentence parallelism, as found in parliament proceedings, is
not the rule but an exception. Most naturally occurring bilingual texts contain roughly
corresponding descriptions of the same or overlapping topics. They exhibit paral-
lelism at the level of documents, sentences, or sentence fragments. The challenge
to employ such not strictly parallel texts has led to a surge of research on special-
ized models to extract parallel sentences from sources such as the web (Resnik and
Smith, 2003), Wikipedia (Smith et al., 2010), newswire (Munteanu and Marcu, 2005),
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or patents (Utiyama and Isahara, 2007; Lu et al., 2009).
Instead of devising another specialized method for sentence alignment on noisy

data, we propose a general two-step model in which a discriminative learner is boot-
strapped from data generated by state-of-the-art unsupervised sentence alignment
tools. This architecture makes our approach semi-supervised, language- and domain-
independent, and applicable to data of various degrees of parallelism. Our bootstrap-
ping methods works as follows: In a first step, we produce large amounts of machine
alignments using state-of-the-art sentence aligners. In a second step, we train a dis-
criminative learner on the “wood standard” annotations created in the first step. This
combination of arbitrary amounts of machine aligned data and an expressive dis-
criminative learner provides a boost in precision. We evaluate our approach on two
datasets: movie subtitles and novels. The efficiency of our approach is ensured by
using a moving window of 50 sentence pairs above and below a diagonal of 1-to-1
alignments to break down the huge number of possible alignments (especially in the
absence of paragraph breaks, as is the case for movie subtitles). We deploy 3 differ-
ent unsupervised sentence aligners (Hunalign (Varga et al., 2005), Opus (Tiedemann,
2007), Gargantua (Braune and Fraser, 2010)) for machine labeling. Our experiments
show that bootstrapping a discriminative learner significantly improves precision in
all cases and, with one exception, also results in an overall gain in F-score.

2. Related work

Most approaches break the sentence alignment problem down into document align-
ment, e.g. using IR techniques, and a procedure for extracting parallel sentence pairs,
e.g., by length-based alignment (Gale and Church, 1993). Typically, sentence pairs are
filtered further in a second step on the basis of word alignment scores. These word
alignments can be obtained from dictionaries (Utiyama and Isahara, 2007; Lu et al.,
2009), external sources (Munteanu and Marcu, 2005; Smith et al., 2010), or from the
preliminary sentence pairs obtained in the first step (Braune and Fraser, 2010; Moore,
2002). As an alternative to filtering, word alignments can be integrated as features in
a maximum-entropy or CRF model (Munteanu and Marcu, 2005; Smith et al., 2010).

Our approach uses a different kind of two-step approach where a discriminative
learner is trained on data that has been machine labeled by state-of-the-art sentence
aligners. While our discriminative learner is based on offline computable word-level
features, more complex features are hidden in the sentence aligners used in the first
step. These may include a word alignment model (e.g., Gargantua (Braune and Fraser,
2010)) or use features that are available only for particular data domains, such as time
stamp information (Tiedemann, 2007).
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Figure 1. Example of alignment matrix. Circles represent sentence pairs and are
labeled with (source sentence ID; target sentence ID). Bold circles stand for 1:1 gold
alignments, bold squares for 1:n and n:1 alignments. Note that target sentence 3
remains unaligned; target sentence 5 participates in a 2:1 alignment (label S2); and
source sentence 8 takes place in a 1:3 alignment (label T3). Filled circles denote

model predictions.

3. Implementation of discriminative sentence alignment

Our toolkit, called CRFalign, is implemented in Java and relies heavily on the fast
conditional random field sequence classifier Wapiti (wapiti.limsi.fr/) (Lavergne
et al., 2010), deploying the expressiveness and flexibility of supervised learning with
linear classifiers. Our code is available at www.cl.uni-heidelberg.de/~mujdricz/
software/CRFalign/ and includes the following:

• functions for encoding alignment as sequence labeling problem (see Section 3.1),
• feature functions and interface to Wapiti training (see Section 3.2),
• beam search and pruning functions,
• scripts for evaluation and significance testing,
• example corpora and detailed usage instructions.

3.1. Problem encoding

In contrast to simpler sequence labeling problems like part of speech tagging,
where we have a sequence of observations to each of which a single label is assigned,
the sentence alignment task involves two independent sequences, the source and the
target corpus. We turn the sentence alignment problem into a set of sequence labeling
problems using a diagonalization strategy in an alignment matrix, as shown in Figure 1.
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This strategy exploits the observation that sentence alignments (like word alignments)
tend to follow diagonals in the alignment matrix (Gale and Church, 1993). In other
words, the diagonals represent the direction of the most important statistical depen-
dencies: An alignment of sentence pair (n;m) is strong evidence for an alignment at
(n+1;m+1). To exploit these dependencies in a linear-chain CRF, we encode each di-
agonal1 from an alignment matrix as one sequence labeling problem. For example,
one labeling problem would consist of the observation sequence ⟨(1; 1), (2; 2), . . . ⟩ and
another one of the observation sequence ⟨(2; 1), (3; 2), . . . ⟩. These sequences capture
dependencies between adjacent 1:1 alignments. However, they are unable to directly
express the dependencies in 1:n and n:1 alignments, and we express them through la-
bels. We use a set of six labels that express different alignment configurations, defined
as follows:
1:1 alignments. If (p;q) is an alignment and no other sentences are aligned with either

p or q, the observation (p;q) is labeled with T.
2:1 alignments. If (p-1;q) and (p;q) are alignments and no other sentences are aligned

with either p or q, then the observation (p;q) is labeled with S2.
3:1 alignments. If (p-2;q) (p-1;q) and (p;q) are alignments and no other sentences are

aligned with either p or q, then the observation (p;q) is labeled with S3.
1:2 alignments. If (p;q-1) and (p;q) are alignments and no other sentences are aligned

with either p or q, then the observation (p;q) is labeled with T2.
1:3 alignments. If (p;q-2), (p;q-1) and (p;q) are alignments and no other sentences are

aligned with either p or q, then the observation (p;q) is labeled with T3.
Incomplete alignments and unaligned sentences. All other observations (p;q) are la-

beled with F. This case applies both if p or q are unaligned or if they are part of
a larger alignment block.

Therefore, the label sequence in Figure 1 for the observation sequence starting with
(1;1) is T T F F S2 T T F, and the label sequence for the observation sequence starting
with (1;2) is F F T F F F F F. This label set is unable to model m:n alignments with
m,n > 1, or 1:n or n:1 alignments with n > 3, but these alignments typically only
make up a small fraction of the data, and the cost incurred from introducing more
labels exceeds possible benefits.

We apply two optimizations to this process concerning the selection of training
and test data to address the predominance of the label F in the entirety of alignment
matrices. First, we restrict our attention to a subset of all diagonals, exploiting the ob-
servation that true alignments usually appear near the first diagonal (the observation
sequence starting with (1;1)). Therefore, we only consider diagonals (n;m) where the
difference between n and m is smaller than or equal to 50. If the lengths of the texts
are very different, we furthermore extend our diagonal set on the axis of the longer

1 We define a diagonal in a matrix of sentence numbers of two parallel texts as a chain of sentence
pairs (source sentence number; target sentence number) in which the sentence numbers of each next pair are
incremented by 1 on both sides.
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text. If the source text is x sentences longer than the target text, then we take all diag-
onals with starting point from (1; 51) up to (51+ x; 1). In the inverse case, we take the
diagonals with starting point from (1; 51+ x) up to (51; 1).

The second optimization performs further pruning within this diagonal window:
We remove any subsequences of the diagonals that contain more than 15 F labels in a
row if no other labels follows. This second optimization applies to the training data
only, since the test data do not have any access to the labels.

3.2. Features

We use four types of features, all of which are inspired by work on word align-
ment (Blunsom and Cohn, 2006): (1), length features; (2), position features; (3), simi-
larity features; (4), sequence features. We lift these features to the sentence level. All
features, with the exception of the POS agreement feature, are language-independent
and can be precomputed from raw text, without the need for linguistic preprocess-
ing.2 Consequently, our model carries over to other language pairs and to other cor-
pora.

Length ratio. In true alignments, the ratios of source and target sentence lengths can
be assumed to be normally distributed (Gale and Church, 1993). The length ratio is
an important indicator if a source sentence and a target sentence are a true alignment.
We use one feature that captures this intuition. For source and target sentences with
m and n words respectively, it is defined as follows:

lengthRatio = min(m
n
,
n

m
).

Position ratio. Sentences that are at similar (relative) positions in source and target
files are more likely to be aligned than those which are far away from each other. To
describe this characteristic of the sentence alignment, we calculate the position ratio.
For source sentences and target sentences at positions p and q, and source and target
corpora with s and t sentences, the position ratio is defined as

positionRatio = |
p

s
−

q

t
|.

POS similarity. Grammatical agreement between sentences can be evidence that
they are aligned. This intuition can be operationalized at the part of speech level. For
example, if there are two nouns in the source sentence, there is an increased proba-
bility to see two nouns in the target sentence. We obtain POS tags from the TreeTag-
ger (Schmid, 1994) and define a simple cross-lingual mapping. The POS agreement

2As we will see in the experimental evaluation, the contribution of the POS similarity feature is marginal,
thus vindicating our claim of language independence.
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feature is defined as the normalized (by sentence length) overlap between the POS
tags of a source and target sentence.

Orthographic similarity. The agreement of named entities and internationally used
words in a sentence pair is another strong signal for true alignment. We compute an
orthographic similarity-based feature which counts matching words in source and
target sentence that contain non-lower-case characters, such as IBM, Oct, or 2.

Punctuation similarity. Similarly, shared punctuation between sentences is also ev-
idence for alignment. Here we only compare the last tokens in the current sentence
pairs. If they are matching punctuation marks, we assign a weighted similarity value
(by inverse corpus frequency) to the sentence pair.

Word edit similarity. Many language pairs share cognates, that is, words with sim-
ilar spelling. Our goodEdit feature captures this observation by counting the relative
frequency of similar words:

goodEdit(p, q) =
2 ∗ goodEditCount

wordLen(p) +wordLen(q)
.

where goodEditCount is defined as the number of word pairs with an edit distance
lower than one fifth of their length. This feature can find slightly different spellings
of a word in different languages like names such as ”Erik” and ”Eric”, or cognate
pairs like ”wonder” and ”Wunder”. This similarity is computed without considering
capitalization.

Dice lexical similarity. The Dice coefficient measures the amount of correlated words
in two sentences, that is, to what extent the sentences’ lexical material co-occurs fre-
quently throughout the corpus. The Dice coefficient for sentences p and q is defined
as:

Dice(p, q) =

∑
i maxjC(pi, qj)

wordLen(p) +wordLen(q)
,

where the co-occurrence score of two words C(pi, qj) is defined as

C(pi, qj) =
2 ∗ f(pi, qj)

f(pi) + f(qj)
.

C is highest for word pairs all of whose instances occur in parallel. The Dice coefficient
sums the maximum co-occurrence scores for all words in the source sentence that
can be obtained by pairing them with the most strongly co-occurring word in the
target sentence. The sum is normalized by the lengths of the two sentences. In our
computation, we exclude function words from consideration, since they frequently
co-occur in unaligned sentences.
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Markov sequence feature. Our last feature expresses the first-order Markov depen-
dency between subsequent sentence pairs in a corpus. It is defined to be the label of
the preceding pair, i.e. the sequence feature of (n;m) is equal to the label of the pre-
ceding pair (n-1;m-1). This Markov feature is crucial for our model, since it captures
the regularity that subsequent observations are likely to share the same label.

Feature computation. As described in Section 3, our model assigns six labels to ob-
servations that represent different sentence alignment configurations. Obviously, de-
cisions among labels like T and S2 (1:1 vs. 2:1 alignment) require access to features
not only of the current observation but also of adjacent observations.

For this reason, the feature set for an observation (p;q) consists not only of the fea-
ture values for (p;q) itself, but also of the feature values for the four observations that
concern the two previous sentences among the source and target sentences and which
can have an impact on the label choice: (p-1;q), (p-2;q), (p;q-1) and (p;q-2). When
choosing a label for an observation, the model takes all of these feature “groups” into
account. We see that in practice, every feature groups indeed correlates strongly with
one label. For example, the model learns that the label S2 is tightly related with the
feature group for (p-1;q).

4. Experiments

4.1. Data

We evaluate our work on two datasets. The first one is Tiedemann’s (2009) Open-
Subtitles corpus (opus.lingfil.uu.se/OpenSubtitles_v2.php) which consists of par-
allel subtitles extracted from the on-line subtitle provider www.opensubtitles.org/.
The parallel data contain over a million translations of movie files in 54 languages.
For the language pair German-English, there are 3.4 million sentence pairs compris-
ing 42.8 million tokens. At first glance, the alignment of movie subtitles appears to be
a simple problem, since subtitle files contain time stamps that indicate the time of the
acoustic appearance of each sentence. (Tiedemann, 2007) has used this information to
automatically align sentences for the OpenSubtitles corpus. However, this time infor-
mation is imperfect, and movie subtitles exhibit other kinds of non-parallelism that
make alignment more difficult. Non-parallelism arises from insertions (e.g. of scene
descriptions), omissions (e.g., due to compression, language differences, or cultural
differences), or other complex mappings (e.g., due to subtitling traditions or special
application areas such as subtitles for the hearing impaired that need extra informa-
tion about sounds).

The second dataset is a parallel corpus of 115 19-th century novels and stories in
English and German. The novels are part of the Project Gutenberg (www.gutenberg.
org) (English) and Projekt Gutenberg-DE (gutenberg.spiegel.de) (German) and are
available from www.nlpado.de/~sebastian/data/tv_data.shtml. As the texts are lit-
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erary translations, they show a lot of freedom in verbalization. It is also the case that
the sentences are on average much longer in novels than in movie subtitles. Sentences
in the Gutenberg corpus are on average 25.2 words long. This is more than three times
longer than in the OpenSubtitles texts with an average of 7.5 words per sentence. An-
other source of variability is automatic sentence boundary detection, which leads to
typical mistakes in sentence detection which produce n : m alignments (n,m > 1).
The percentage of such n : m alignments is higher than in the OpenSubtitles corpus.

4.2. Experiment design

For training, CRFalign uses Wapiti with default meta-parameter settings, except
for posterior decoding at labeling time. On the movie subtitle dataset, we use 309
English–German movie pairs from the OpenSubtitles corpus as training set. For eval-
uation, we manually aligned the German and English subtitles for 6 movies. The an-
notation guidelines allowed 1:1, 1:n, n:1 and m:n alignments, stating that sentences, or
sentence sequences, respectively, should only be aligned if the passages expressed ex-
actly or almost exactly the same content. This guideline was mostly uncontroversial.
The train and test data for the Gutenberg dataset consist of 112 novels for training and
3 for testing. The test data set was manually annotated following the OpenSubtitles
annotation guidelines.

To evaluate the predictions of our CRFalign system for each of the 6 and 3 man-
ually aligned file pairs for OpenSubtitles and Gutenberg data respectively, we com-
pute the standard evaluation measures precision (P), recall (R) and F1-measure (F).
We use the following state-of-the-art sentence alignment tools. On the OpenSubti-
tles corpus, we deploy the original OpenSubtitles alignments (opus.lingfil.uu.se/
OpenSubtitles_v2.php) (Tiedemann, 2007) (OPUS). This dataset was also sentence-
aligned with Hunalign (mokk.bme.hu/resources/hunalign/) (Varga et al., 2005), an
unsupervised alignment system that combines length-based alignment with word-
alignment filtering. On the Gutenberg corpus, OPUS is not available since it relies on
time stamp information. Therefore we aligned this data, in addition to Hunalign, with
Gargantua (sourceforge.net/projects/gargantua/) (Braune and Fraser, 2010), an-
other state-of-the-art unsupervised sentence alignment tool. Our own system, which
we call CRFalign, makes its predictions on the basis of these systems for each sentence-
pair within the generated diagonals. Recall that for test files we do not prune the
diagonals at all, which leads to (a priori) independent predictions for each diagonal.
In the case of conflicts (about 5% of predictions), conflicts are resolved by preferring
longer alignment chains over shorter ones.

4.3. Experimental results

Table 1 shows a comparative evaluation of state-of-the-art sentence aligners with
our discriminative learner trained on machine labeled output of the respective sys-
tems.
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OpenSubtitles corpus

OPUS Hunalign

P R F P R F
74.64 73.47 74.05 92.27 91.48 91.87

OPUS + CRFalign Hunalign + CRFalign

97.59* 85.69* 91.26* 95.51* 87.95* 91.58
Gutenberg corpus

Gargantua Hunalign

P R F P R F

90.70 89.86 90.28* 74.64 77.76 76.17

Gargantua + CRFalign Hunalign + CRFalign

91.94 76.64* 83.60* 91.08* 72.22* 80.56*

Table 1. Precision (P), Recall (R), and F1-score (F) on OpenSubtitles (top) and
Gutenberg (bottom) data for state-of-the-art sentence aligners OPUS, Gargantua, and
Hunalign, compared to our CRFalign discriminative sentence aligner trained on the

machine labeled output of the respective systems. A statistically significant difference
between systems is indicated by ∗ (p < 0.05).

We find that in every single case, precision is significantly improved by bootstrap-
ping the discriminative learner CRFalign compared to the original machine-labeled
data. Thus, CRFalign consistently acts like a filter that learns to recognize reliable sen-
tence alignment pattern in the output of other aligners. The impact on Recall is more
varied: it rises significantly for OPUS, drops somewhat for Hunalign, and decreases
substantially for Gargantua. This indicates that the filter is not able to recognize all
valid alignment pattern. In the case of Gargantua, F-Score decreases over the initial
alignment, however, it increases significantly in most other cases.

We also compared CRFalign against Hunalign’s capability to refine its initial align-
ments in a realignment step (option -realign). Hunalign’s realignment results in the
following scores (Precision / Recall / F1-measure): 91.14% / 90.73% / 90.93%, and
75.21% / 78.08% / 76.62% on OpenSubtitles and Gutenberg data respectively. Results
on OpenSubtitles are slightly lower than the original Hunalign alignment scores; the
differences on Gutenberg are not statistically significant. These results are lower than
the results obtained by realignment via bootstrapping with CRFalign.
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OpenSubtitles corpus Gutenberg corpus
CRFalign + OPUS Hunalign Gargantua Hunalign

all 92.17 92.22 84.46 79.93
–Markov sequence feature 71.83 60.40 55.07 54.28
–Dice lexical similarity 86.61 86.78 77.98 74.43
–length ratio 88.83 90.11 77.31 76.00
–word edit similarity 91.50 91.85 83.40 80.09
–punctuation similarity 91.81 91.64 83.73 79.48
–position ratio 92.48 92.45 84.04 80.05
–orthographic similarity 91.51 92.49 84.59 80.42
–POS similarity 91.55 92.69 84.75 81.35

Table 2. F-Scores after removing different features the CRFalign feature set.

Furthermore, we investigate the contribution of each feature by ablation, i.e. by
leaving out each feature in turn. Table 2 shows the results. Removed features are listed
in descending order of their influence on F-score. The analysis shows that the most
important individual feature in our feature set is the Markov feature. This feature rep-
resents the essential sequential characteristic of our data. Other features contribute
to the performance to various, but much smaller, degrees. Most features complement
each other so that a cumulative improvement is generally achieved by using all fea-
tures in the model.

5. Conclusion

This paper has presented an approach sentence alignment that piggybacks on the
output of state-of-the-art sentence aligners for bootstrapping a discriminative sen-
tence aligner from machine labeled data. The semi-supervised nature of our approach
allows us to aim for high precision alignments while still obtaining improved F-score
without the need for manual alignment. Our approach is language- and domain in-
dependent and even applicable to datasets with varying degree of parallelism. As
shown in the feature ablation experiment, the only language-dependent feature (POS
agreement) contributes nearly nothing to overall quality. Our approach addresses the
problem of searching a large space of possible sentence alignments by employing a
moving window of 50 sentences above and 50 sentences below a diagonal of 1-to-1
alignments. This makes our approach feasible for large datasets even in the absence
of paragraph breaks. Finally, the features used in our approach are efficiently com-
putable offline, so that the additional burden of discriminative re-alignment becomes
worthwhile if high precision alignments are desired.
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