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Abstract 
 
A recent research direction in computational linguistics involves efforts to make the field, 
which used to focus primarily on English, more multilingual and inclusive. However, 
resource creation often remains a bottleneck for many languages, in particular at the semantic 
level. 

In this article, we consider the case of frame semantic annotation. We investigate 
how to perform frame selection for annotation in a target language by taking advantage of 
existing annotations in different, supplementary languages, with the goal of reducing the 
required annotation effort in the target language. We measure success by training and testing 
frame identification models for the target language. We base our selection methods on 
measuring frame transferability in the supplementary language, where we estimate which 
frames will transfer poorly, and therefore should receive more annotation, in the target 
language. 

We apply our approach on English, German, and French – three languages which 
have annotations that are similar in size as well as frames with overlapping lexicographic 
definitions. We find that transferability is indeed a useful indicator and supports a setup 
where a limited amount of target language data is sufficient to train frame identification 
systems. 
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1 Introduction 
Semantic frames are structured representations of everyday scenarios or scenes that can be 
evoked by several predicates (Fillmore, 1982); for example, predicates such as beat, trounce, 
demolish, or prevail all evoke a frame about a victor winning over a competitor 
(BEAT_OPPONENT). Linguistically, frames are scenes that might be realized in different 
ways. Because of this, semantic frames can be used to account for paraphrase relations 
among sentences that refer to a shared scenario (He prevailed over the reigning champ ≈ He 
beat the reigning champ, Ellsworth and Janin (2007)) or to draw inferences (Ben Aharon et 
al. (2010)). The Berkeley FrameNet resource for English (Fillmore and Baker, 2001) 
provides a dictionary of frames where the main components of a frame, including its 
predicates and semantic roles, are defined. Along with its dictionary, FrameNet provides 
annotations of frames in text which demonstrate how the frame is used in language. 

Frame semantics is also an appealing framework for cross-lingual research, as many 
frames are thought to be applicable across languages (Boas, 2005). This premise has fueled 
linguistic research into the applicability of frame semantics to other languages, which have 
been as varied as German, Spanish, Latvian, Chinese, and Japanese (Gilardi and Baker, 
2018). Unfortunately, a recurring bottleneck in these efforts is the need to create frame-
semantic annotation. Experiences from existing FrameNet projects show that the timeline 
for the development of such resources is most likely on the order of years rather than months. 
This is particularly true for applications of frame semantics in NLP, which involve training 
frame-semantic parsers (e.g., Das et al., 2014, Roth and Lapata, 2015) which require 
substantial amounts of annotation for each frame.  

In this article, we focus on a subproblem of frame-semantic parsing, namely models 
of frame identification. Frame identification is a disambiguation task where each occurrence 
of a predicate in context has to be assigned its correct frame given several possible frame 
candidates. For example, the predicate cover can refer to a physical covering (FILLING: The 
lid covers the pot) or to the topic of a communication act (TOPIC: The textbook covered 
modality in detail). The goal of a frame identification system is to take a new instance of a 
predicate (cover) in context (The article covered the coronavirus vaccine) and automatically 
identify the frame it evokes (TOPIC). Though frame semantic parsing efforts have focused 
largely on the identification of semantic roles, frame identification is still an important task; 
it has been shown that a majority of errors in a complete frame semantic parsing system can 
be traced back to errors in frame identification (Hartmann et al., 2017). 

In order to avoid the need for large scale annotation, we ask whether existing 
annotation from languages that are already well-covered (supplementary languages) can be 
re-used to train frame identification models in new languages (target languages). Recent 
multilingual embeddings are now providing a relatively simple technical means to 
seamlessly integrate training data from multiple languages (see Section 2.3 for details). 
However, it is much less clear whether the linguistic properties of the annotated datasets 
support this procedure. Often, FrameNet frames are found to be broadly applicable to other 
languages (Gilardi and Baker, 2018, Torrent et al., 2018); at the same time, some amount of 
‘tuning’ may be required regarding their definition. To our knowledge, there are no studies 
that attempt to quantify these effects in models of cross-lingual frame identification. In 
linguistics, however, recent studies have emerged which present quantification of frame 
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transferability from English to Brazilian Portuguese on a preliminary study with a set of 
parallel, frame-annotated sentences (Torrent et al., 2018).   

We operationalize the idea of quantifying transferability by training frame 
identification models on monolingual data (target language) and multilingual (target + 
supplementary languages), adopting a fixed  annotation budget for the target language, 
where only a modest number of datapoints can be labeled. We fill the annotation budget by 
performing informed frame selection based on frame transferability. Our notion of frame 
transferability builds on work that estimates the difficulty of Word Sense Disambiguation 
(WSD) by measuring the coherence of the word senses in the data (McCarthy et al., 2016). 
Similarly, we assume that frames that are coherent in the supplementary languages will be 
better candidates for transfer to an unseen language, requiring less target language annotation 
than incoherent frames (see Section 2.4 for details). 

Clearly, another prominent indicator of frame transferability would be a direct 
measurement of cross-lingual frame applicability (Boas, 2020, Sikos and Padó, 2018). 
Unfortunately, such methods already assume the existence of annotation in the target 
language. Therefore, we choose to exclude explicit measures of cross-lingual applicability 
from our models, since we crucially want our methodology to generalize to target languages 
for which we assume that no annotation is yet available. We later discuss cross-lingual frame 
comparability in our post-hoc analysis.  

We select target annotations at the frame level (instead of selecting by predicates) for 
a few reasons. First, the frame level matches our goal of creating data to train a frame 
identification system. Second, in terms of data analysis, we are interested primarily in 
generalizable properties of frames rather than more fine-grained units.  

In our empirical evaluation, we study frame identification over three target 
languages: English, German, and French, where the languages have frame definitions that 
are similar (taken directly from English) as well as different (adapted for the language of 
interest). Our selection method is based on latent properties of frame annotations, which 
reflect how the frame is used in context over each language. Therefore, we can evaluate 
which frames our selection models are more likely to choose for target language training: 
frames with similar or different definitions across languages. 

Plan of the Paper. Section 2 sketches relevant related work. Section 3 contains the 
core method contribution of our study: A method for informed frame selection based on 
performance prediction using features for cross-lingual frame transferability. Section 4 
describes the experimental setup, and Section 0 reports our results. Section 6 closes with a 
discussion. 
 
2 Related Work 

2.1 Frame-Semantic Analysis Across Languages 
As sketched in the introduction, a prominent research question from a cross-lingual perspective is to what extent 

semantic frames can be considered to be ‘universal’ (Boas, 2020). Many FrameNet frames are found to be broadly 
applicable to other languages (Gilardi and Baker, 2018), and most projects considering other languages use some frames 

that are essentially unchanged from the English definition, alongside others that have been modified to suit the 
language of interest. Reasons that call for frame modifications include typological shifts or subtle differences in the 
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frame’s interpretation which cause divergences in the core semantic roles and frame-evoking predicates (Ohara, 2014, 

Boas, 2005);  

Figure 1 - JUSTIFYING frame in English, German, and French where the frame definition 
differs across all languages. The differences can be seen in terms of the frame-evoking 
predicates (above) and the core semantic roles (below).Figure 1 shows the JUSTIFYING 
frame in English (Baker, 2008), German (SALSA) (Burchardt et al., 2006), and French 
(Candito et al., 2014), where the definition has been modified for each language. 

Differences in annotation strategies is another factor that affects the versatility and 
frequency of frame coverage in different frame semantic resources. Annotations typically 
proceed by a frame-by-frame approach, where the goal is decent coverage of each frame in 
the lexicon; lemma-by-lemma, where all senses of the annotated lemmas are covered; or full-
text annotation, where frames are identified over running text.  The English Berkeley 
FrameNet adopted both frame-by-frame and full text annotations, the French FrameNet used 
a frame-by-frame approach, and the German SALSA corpus took a lemma-by-lemma 
annotation approach. 

 

 

Figure 1 - JUSTIFYING frame in English, German, and French where the frame definition differs across all languages. 
The differences can be seen in terms of the frame-evoking predicates (above) and the core semantic roles (below). 

 

2.2 Frame Semantics and Natural Language Processing 
Frame semantics has been shown to benefit a number of downstream NLP tasks, including 
information extraction and question answering (Shen and Lapata, 2007, Burchardt et al., 
2009b, Christensen et al., 2010, Taniguchi et al., 2018, Si and Roberts, 2018). Most 
recently, frames have been proposed as one of the frameworks that could be a basis for 
studying meaning construal, where the same conceptual background can be expressed with 
different emphasis or perspective (Trott et al., 2020).  

To be useful at scale, though, all of these applications require accurate automatic 
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models of frame-semantic parsing, or at least frame identification. For the most part, all 
state-of-the-art models are based on word embeddings, high-dimensional representations of 
word meaning that are created from large collections of unstructured text. While previously 
such representations were directly based on counts, the current generation of word 
embeddings is based on neural network architectures such as Word2Vec (Mikolov et al., 
2013), FastText (Bojanowski et al., 2017) or BERT (Devlin et al., 2019). Word 
embeddings can serve as input for supervised classification or regression models for 
specific tasks, whose training of course requires task-specific annotation (“fine tuning”). 
For frame identification, relatively straightforward embedding-based classification was 
quickly able to match and outperform traditional feature-based models (Hermann et al., 
2014)1. 

Much of the recent work in frame identification focuses predominately on English, 
although resources have been developed in a handful of other languages – the largest and 
most well-covered include German (Burchardt et al., 2006), French (Candito et al., 2014), 
Dutch (Vossen et al., 2018), and Swedish (Borin et al., 2010). Following the release of 
these resources, frame semantic parsers were developed for most of these target languages, 
where classifiers predict frames with lexical and syntactic features (Johansson et al., 2012, 
Michalon et al., 2016, Erk and Padó, 2006). 

2.3 Modeling Multilingual Frame Identification 
The latest generation of embedding architectures are the so-called transformers which are 
able to learn contextual dependencies in an unsupervised fashion and construct context-
dependent meaning representations: tree will receive one embedding in the phrase the tree 
in the forest and another one in the phrase dependency tree. Not surprisingly, one of the 
best-known transformer models, BERT (Devlin et al., 2019), is the basis of state-of-the-art 
frame identification models for English (Sikos and Padó, 2019, Tan and Na, 2019). 

The simplest way to set up the BERT model for frame identification is to predict one 
frame (including a ‘None’ option) for each token in a sentence. In this setup, each training 
datapoint is a single annotated instance of a predicate and its context words, where the 
label that is predicted for the predicate is the correct frame. Such datapoints can be created 
straightforwardly from existing frame-semantic annotations. 

An important recent development in word embeddings is multilingual embeddings 
(Upadhyay et al., 2016, Lample et al., 2018, Artetxe et al., 2020). Certain approaches to 
constructing multilingual embeddings involve adversarial training for refining embeddings 
cross-lingually (Lample et al., 2018), or bilingual dictionaries for transforming embeddings 
from a source to a target language (Artetxe et al., 2017). While BERT embeddings were 
initially trained on corpora in individual languages, researchers realized quickly that 
embeddings could be trained on multiple corpora simultaneously, or existing embedding 
spaces aligned with one another. In either case, the result is a space in which words from 
multiple languages are represented ‘on par’. This enables the exploration of different 
scenarios including experiments where a model is trained with annotations from one 

 
1 Furthermore, the embedding approach generalizes to other modalities: (Botschen et al., 2018) use 
representations of images as a predicate’s context to predict frames. 
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language and applied ‘as-is’ to another, so-called zero-shot learning (Wu and Dredze, 
2019, Pires et al., 2019). For frame identification, this means that not even comparable 
corpora are necessary such as were used in previous approaches to cross-lingual frame 
identification (Johannsen et al., 2015, Kozhevnikov, 2016).  

Recently, multilingual embeddings have been used to compute the alignment of lexical 
unit embeddings across languages in the Multilingual FrameNet alignment package2. These 
embeddings are based on large-scale, multilingual language models which we describe in 
our approach below, and the translation of a frame’s lexical units across languages can be 
visualized by this method. 

2.4 Frame Transferability 
Since in frame identification, predicates can evoke multiple frames, this task bears a strong 
resemblance to the well-researched paradigm of WSD. This is why we use a study from 
WSD on the impact of semantic coherence on disambiguation difficulty (McCarthy et al., 
2016) as our basis for estimating a frame’s cross-lingual transferability in our multilingual 
frame identification models. 

McCarthy et al. (2016) start from the observation that some words are much easier 
to disambiguate with regard to word sense than others. While factors like part-of-speech, 
frequency, or type of ambiguity (homonymy vs. polysemy) play a substantial role, a lot of 
variance remains unaccounted for. In response, they carry out a study in which they 
analyzed the difficulty of WSD for various lemmas in terms of the semantic coherence of 
the senses of these lemmas. They measured two aspects of coherence, representing senses 
as sets of embeddings for individual senses: (1), lemmas with senses whose instances form 
tight clusters should pose simpler WSD problems than lemmas whose senses are ‘spread 
out’; and (2), lemmas whose senses are well separated from one another are presumably 
simpler to disambiguate. McCarthy et al. found very good empirical support for these 
hypotheses. 
 
3 Methods 

3.1 Cross-Lingual Frame Selection 
Recall from Section 2.3 that our goal is to build a frame identification system for a target 
language T, while we assume that we have access to frame annotations for a set of 
supplementary language(s) S. The simplest way to do this would be to build a model using 
only the available frame-labeled data from S. However, given the imperfect comparability 
of frames across languages (see 

 
 

2 https://github.com/icsi-berkeley/framenet-multilingual-alignment 
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Figure 1), such a classifier will presumably not do well. Thus, our research question is: 
Given a fixed annotation budget for T, how can we select frames for annotation to 
maximally improve a system that has only learned about frames from S?  

We pose our frame selection process as a performance prediction task (Bojar et al., 
2017, Elloumi et al., 2018) where we are estimating a frame’s cross-lingual transferability. 
We do this by estimating how much the annotations of a frame from T will improve frame 
identification given the availability of frame data from S. As such, frame selection is based 
on properties of the frames in S (which is the only data we assume we have), which we use 
to estimate how useful a T frame annotation will be towards improving the existing, 
multilingual frame identification system.  

An overview of our approach is shown in Figure 2. It consists of three steps: building a 
baseline (we use the multilingual frame identification system from Section 2.3), learning 
the frame selection model where we estimate the transferability of frames and select frames 
from its estimations (Section 3.2), and using the selected T frames plus S frames to build a 
final frame identification model for T. 
 

 
Figure 2 - Overview of Frame Selection 

To learn the frame selection model, we need to use data from one language pair ⟨S,T⟩ 
for which we assume annotations already exist. We can then build multilingual frame 
identification systems trained (a) only on S, and (b) on S plus all available training data from 
T. We compare frame performance of these (a) and (b) systems to obtain ∆F, the change in 
performance by adding T frame annotations. A high ∆F indicates that the frame identification 
system benefits from the T annotations for that frame, whereas a low score indicates that the 
S annotations are already sufficient. Specifically, a high ∆F score suggests that the frame has 
a lower cross-lingual transferability, as more language-specific annotations are required to 
improve performance, and S annotations were not suitable for learning the frame. 

In the general case, however, our goal is to define a frame selection process that 
generalizes to various target languages, including those for which no annotation is available 
at all. As we argued in the introduction, this means that we only use properties in the frame 
selection process that are based on data in the supplementary language S. 

Finally, we can apply the frame selection model to rank the T frames by their 
estimated ∆F score and select the T frames with the highest scores for annotation. In our 
experiments in this article, we do not perform actual annotation; instead, we simulate 
annotation by simply sampling the respective frame annotations from the existing dataset. 
We then re-train a multilingual frame identifier on the S annotations, plus the annotation 
instances of the selected frames from T. 

3.2 Estimation of Frame Transferability 
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Using the frame identification architecture described in Section 2.3, we train two models: 
one trained on all of S data, henceforth MS, and a model trained on all of S plus the training 
set of T , henceforth MS+T. We define ∆F for each frame f as the difference between the 
frame’s F1 score from both models: 
 

∆𝐹	 = 	𝐹1(𝑓,𝑀! + 𝑇)	− 	𝐹1(𝑓,𝑀!) 
 
We compute ∆F of each frame over the development set in T3. A high ∆F indicates that a 
frame profits substantially from annotation in T and therefore has lower cross-lingual 
transferability.  

Our frame selection is a linear regression model, which is a well-established 
architecture for data analysis in NLP (Baayen, 2008). Estimating frame transferability with 
linear regression also has the benefit of introspection into how frame properties are related 
to their performance. 
3.2.1 Frame Transferability via Semantic Coherence 
As introduced in Section 2.4, the properties that we consider are measures of semantic 
coherence following McCarthy et al. (2016). We replace the notion of ‘sense’ by the notion 
of ‘frame’, but use an analogous setup where each instance is represented by one 
(contextualized) embedding. Recall from Section 2.4 that McCarthy et al.’s first indicator 
was how tightly the instances of a word sense cluster together. Applied to frames, we have 
our first hypothesis concerning the variance of a supplementary language frame. 
Hypothesis #1: the larger the variance of a frame (i.e., the more dissimilar its instances to 
one another in the supplementary language), the more it profits from target language 
annotation. We make this idea concrete as follows. Let centroid(F) be the average of all of 
its annotated instances f: 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐹) 	= 	
1
|𝐹| 9 𝑓

"	∈	%

 

 
Then, we define Var as the variance of the frame by taking the difference between each 
individual frame instance (f) and its frame centroid: 
 

𝑉𝑎𝑟(𝐹) =
1
|𝐹| 9

‖𝑓 − 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐹)‖&
"	∈	%

 

 
The second indicator McCarthy et al. (2016) consider is the average of all between-cluster 
(i.e., between-sense) distances. We believe that for frame identification, where typically a 
small number of senses are realistic candidates, it is more sufficient to consider the 
separability between the current frame and its nearest neighbor. Therefore, we next 
hypothesize that distance affects frame performance. Hypothesis #2: the smaller the distance 

 
3 We use F1 scores to compute ∆F because we do not want frame selection to be biased by frames that are 
highly frequent in the target language test data, and accuracy would be ill-suited because of the dominant 
number of true negatives. For final evaluation, however, we still use the established measure for frame 
identification, which is overall accuracy over instances (see Section 4.4). 
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between a frame and its nearest neighbor, the more it profits from target language 
annotation. Formally, we define Dist as the distance between frame centroids, calculated by 
cosine similarity between a frame F and its nearest neighbor F′: 
 

𝐷𝑖𝑠𝑡(𝐹) 	= 	‖𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐹) 	− 	𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝐹′)‖& 
 
As a third indicator, we compute the coherence of a frame as the ratio of the Dist and Var 
scores: 
 

𝐶𝑜(𝐹) 	= 	𝐷𝑖𝑠𝑡(𝐹) 𝑉𝑎𝑟(𝐹)A  
 
 
We include Co to account for interactions between Dist and Var and again assume a larger 
benefit of target language annotation for lower values of Co. Concretely, if we assume in 
Hypothesis 1 that variance of supplementary language frames should be high, and 
Hypothesis 2 that distance of frames and their nearest neighbors should be low, we would 
predict that frames with the lower Co values would be better candidates for frame selection. 
Alternatively, a higher value of Co would indicate that the frame already has good 
clusterability, with low variance across the frame’s instances and a high distance from other 
frames, and therefore would likely be learnable from the supplementary annotations and 
wouldn’t require additional target language data. 
 
4 Experimental Setup 

4.1 Experimental Rationale 
As we described in Section 3.1, we start with only frame annotations from S and 
subsequently add a moderate budget of annotations from T (we consider budget sizes of 5k 
and 10k instances). We simulate target language “annotation” by taking randomly sampled 
annotated instances of each selected frame from T. In certain cases, there can be a high 
number of annotations for a single frame; in fact, some resources have frames with a very 
high (>1000) number of annotations. If we take all the training instances from these frames, 
we reduce the diversity of frames that are seen by the classifier and the added frame data 
would be dominated by these few, highly annotated frames. To prevent this problem, we 
restrict the number of instances of each frame to 200 random instances, motivated by a desire 
to cover a substantial number of frames. The number 200 was selected to balance the goals 
of adding a substantial number of frames and a substantial number of instances per frame. 

Since our experiment uses informed frame selection, the question remains how we train 
the frame selection model. As we noted in Section 3.1, frame identification training requires 
annotated data both for S (to provide the features) and T (to evaluate the predictions). We 
therefore train the frame selection model on our language pair ⟨	S, T⟩ with the largest number 
of overlapping frames, namely ⟨German, English⟩. We use the development set of T (in this 
case, English) to learn the frame selection model so that there is no information leakage to 
either frame identification model training or frame identification model evaluation. The 
frame selection model is then applied as-is to all other language pairs ⟨S',T'⟩ for frame 
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selection, thus demonstrating its generalization capabilities to unseen languages. Models are 
then trained with this modified ⟨S'+selected T'⟩ data and evaluated over unseen T' test data.  

Below, we present results for all combinations of supplementary and target languages. 
Due to our use of multilingual embeddings, we can also construct models based on multiple 
supplementary languages for a single target language. For these models, we combine the 
ranked list of frames from each individual ⟨S',T'⟩ pairs and take the top predicted frames 
from this combined set as our selected frames. 

4.2 Datasets 
Despite growing efforts to create frame-semantic resources for different languages (Torrent et al., 2018), the number of 
languages with sufficient amounts of publicly available frame semantic annotations suitable for NLP models is still 
limited. For this reason, our experiments cannot rival the massively multilingual setups that have been explored for word 
embeddings (Ammar et al., 2016) or parsing (Agić et al., 2016). Another practical limitation we encountered was the 
familiarity of the authors with the languages under consideration to qualitatively assess and analyze the output of the 
models. Therefore, we focus on frame-semantic annotations for three languages: the Berkeley FrameNet 1.5 
annotations for English4, the French FrameNet corpus5 (Candito et al., 2014) and the German SALSA corpus6 (Burchardt 
et al., 2006).  

Table 1 provides descriptive statistics for the three resources, including numbers for the 
frame overlap with English.  
 

 
 
 
 
 
 

 

Table 1 - Frame-semantic resources for English (EN), French(FR), German(DE) where frames that have not been 
modified from the English definitions (“same”) and frames that have been modified (“mod”) represent large subsets of 
the frames in the FR and DE resources. Language specific frames in are not aligned cross-lingually (“unaligned”). 
*Total for frames with “same/mod/unaligned” is higher than the # frames, as there are frames in both “same/mod” 
categories in DE (discussed further in Section 5.3.1). 

 
4.2.1 Berkeley FrameNet 1.5  
The FrameNet 1.5 full-text annotations form the standard corpus for frame identification 
systems in English and cover a bit more than 1000 frames. In our training, we use a single 
frame-evoking element, its sentential context, and its frame as one instance for the classifier. 
We adopt the widely used test/train/dev splits defined by Das et al. (2014). 
 
4.2.2 French FrameNet 

The French FrameNet project (Djemaa et al., 2016) adapted their frame inventory 
from the English FrameNet 1.5. Frame annotations were added to the French Treebank and 

 
4 https://framenet.icsi.berkeley.edu/ 
5 https://sites.google.com/site/anrasfalda/ 
6 http://www.coli.uni-saarland.de/projects/salsa/corpus/request/salsa-corpus-request.cgi 

   #  # instances  Frame overlap w/ English 

 T Lang  frames  Train Dev Test  same mod unaligned 

EN  1020  15044 4434 4458  - -  

FR  105  16961 1732 2941  46 22 37 
 DE  1001*  26070 5530 5659  256 37 730 
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Sequoia treebank (Abeillé and Barrier, 2004, Candito and Seddah, 2012), which covered 
four domains (commercial transactions, cognitive stances, causality, and verbal 
communication). French FrameNet provides its own test/train/dev splits. 

The French data covers only about 100 frames annotated compared to roughly 1000 
frames for the two other languages, resulting from a different sampling strategy. Many 
French frames were adopted as-is from the Berkeley FrameNet, but about half of them 
were systematically restructured to yield a better fit with the corpus. This includes cases 
where multiple English frames have been combined into a new frame. For example, French 
has the CHATTING_DISCUSSION frame, which combines the CHATTING and 
DISCUSSION frames from the English lexicon; such cases count as ‘unaligned’ in the 
table. Since the number of annotated instances for French and German is on the same order 
of magnitude (within a factor of 2), but the number of French frames is substantially lower, 
the average number of annotated instances per frame is highest for French. We believe that 
this combination of properties (close to English but many changed frames) makes French 
an interesting target language in our experiments. 
 
 
4.2.3 The German SALSA corpus 
The SALSA corpus provides frame-semantic annotations over the German TIGER news 
corpus (Brants et al., 2002). We use the train/test/dev splits defined by Botschen et al. (2018) 
for our experiments. 

SALSA initially adopted frames from the English FrameNet 1.2 inventory. A 
comparatively small number of frames was modified; in contrast, a large number of frame 
approximations, called “proto-frames”, was added (these count as ‘unaligned’). These are 
lemma-specific frame structures developed to cover instances for which FrameNet did not 
provide an adequate frame (see Burchardt et al. 2009a for details). 

 
 
 

4.3 Multilingual Embeddings 
As embeddings, we use mBERT, a multilingual BERT model which represents words of 
over 100 languages in a shared semantic space. This model was trained on Wikipedia 
dumps available for the various languages (Karthikeyan et al., 2019). 

4.4 Evaluation 
Classifier accuracy is the percentage of correct predictions of the classifier when the full 
set of classes is used, and is a standard metric of evaluation for computational systems. For 
frame identification, we use the full set of frame classes, meaning there is no assumption 
about which specific frame candidates a single predicate might evoke. 
4.4.1 Baselines 
 We report several different baselines for our experiment. The S only baseline only uses data 
from the supplementary S language(s) and tests on a target T language without any T training 
data. Frames that are used from the S language for training in T are the frames in S data that 
are shared with the target language. These include the “same” and “modified” frames in 
Table 1, where we do not include frames that are “unaligned” in French and German. For 
German, the “unaligned” cases include language-specific, “proto-frames”, and for French, 
these include frames whose definition is a blend between two frames where the frame is 
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essentially language-specific and not readily alignable to an English or German frame7. In 
other words, frames that can be readily mapped back to a T frame through the frame’s naming 
and semantic roles are used for S only training. 

The Random baseline adds 5k or 10k instances of randomly selected T frames to the S 
only data. Identical to the Embedding model, a maximum of 200 random instances per frame 
are chosen. 
 
  

 
7 This work was conducted before the release of the Multilingual FrameNet alignment tool, which for future 
extensions, could be an additional measure for cross-lingual frame alignment 
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5 Results 
 

           

   S only  S+T with Frame Selection 

      Random  Embeddings 

 T S # all  +5k +10k  +5k +10k 

 1 EN DE 25k 17.88  33.99 55.61  35.76 60.77 

2  FR 11k 3.99  27.74 52.13  28.29 57.94 
3  DE+FR 36k 14.27  30.80 59.14  54.40 62.36 
4 DE EN 14k 38.79  23.33 37.06  24.16 42.75 
5  FR 8k 5.57  18.45 35.27  21.66 40.25 

6  EN+FR 22k 27.99  22.55 39.54  43.24 43.88 
 7 FR DE 7k 12.42  37.88 54.97  47.03 62.09 
8  EN 2k 17.38  25.58 59.26  46.65 59.66 
9  DE+EN 9k 18.55  25.76 59.25  59.99 61.77 

 a b c d  e f  g h 

Table 2- Results for frame selection(baselines and cross-lingual training): Test set classifier accuracies for models using 
all supplementary data (S only) with number of S instances used in training (#) and supplementary data plus a fixed 
budget (5k/10k) of target annotations (S+T) selected by different criteria (random, embedding-based features). 

The starting point of our experiment is the baseline which used only training data of the 
supplementary language (S only) and evaluated on the test data of the target language (T). 
Results for this setting are given in the all column in Table 2 (cells 1d – 9d). For each target 
(T) language, S only results are given for all supplementary languages, including combined 
supplementary languages. In all T languages, we see that learning with the supplementary 
annotations alone achieves accuracies of 4% from FR to EN (where FR is S and EN is T, cell 
2d) to 39% from EN to DE (cell 4d). The comparably bad results for FR as S are mainly a 
result of the small frame intersections between FR and the other languages (cf. Error! 
Reference source not found.). Conversely, EN to DE has the largest frame intersection, and 
DE is the best model for English as the target language, presumably due to this higher 
number of shared frames. In sum, leveraging annotations from different, supplementary 
languages alone - that is, assuming that no annotations for the target language are available, 
shows reasonable performance but arguably does not yield models that are practically usable. 

We therefore proceed with adding target language annotations (+5k and +10k) back 
to the multilingual training. We first consider random frame selection to disentangle the 
effect of added T data in general with the effect of a deliberate selection of frames (cells 1e 
– 9f). Without comparing our selection to a random frame selection, it would remain an open 
question as to whether no selection of frames was necessary in the first place and that any 
target language data of a certain size would yield comparable improvements. Compared to 
the S only training, results in Random show that even with a random selection of 5k instances 
from T the performance achieves significant gains. However, all language pairs benefit from 
a more informed frame selection (cells 1g – 9h). Regarding the effect of dataset size, we 
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unsurprisingly find that adding more data (+10k) is always better than adding fewer data 
(+5k) within each selection strategy, although the improvement is smaller in cases where 
data from multiple languages is combined (DE+EN to FR and EN+FR to DE). However, in 
those cases, selecting +5k instances ranked by the embedding-based predictors actually 
yields a higher accuracy than +10k instances from random frames. 

In terms of language pairs, we observe that results for EN to DE and DE to EN are 
consistently higher than for FR to DE and FR to EN, respectively. When using French as the 
target language, none of the two supplementary languages performs consistently better than 
the other. In combination, however, we observe the highest improvements for French. In 
general, the best results for each language T combine both S languages. This suggests that, 
when only a few annotations are available, a new language would likely benefit the most 
from a simple concatenation of available frame annotations from various source languages. 
In fact, a modest +5k instances of data from multiple languages could achieve similar results 
as +10k instances depending on the source and target languages. 
 

5.1 Benefit of Supplementary Language 
 Our approach uses the supplementary annotations in two capacities: 1) as part of the 
multilingual training data, and 2) for the selection of informative target frames. One 
unanswered question from the results presented in Table 2 is whether the supplementary data 
is actually benefiting the system at all; more specifically, we need to ask whether we would 
have achieved the same results with a selection of T frames alone. To answer this question, 
we train T only models which train the classifiers only on the same 5k/10k instances used for 
Random baseline, without using any supplementary data. The results of these tests are given 
in Table 3 below and are directly comparable to the Random baseline results in Table 2 
(repeated below for clarity). For the S+T setting from Table 2, we show performance of the 
combination of both supplementary languages for each target language (cells 3a,f/6a,f/9a,f). 
 

Training data Target Language 
 EN DE FR 

T only (random 
frame selection) 

+5k +10k +5k +10k +5k +10k 
24.92 47.75 18.64 34.56 25.12 48.05 

S+T (random 
frame selection) 

+5k +10k +5k +10k +5k +10k 
30.80 59.14 22.55 39.54 25.76 59.25 

Table 3 - T only model results: test set classifier accuracy when training only on target language (T only), compared to 
the best performing Random baseline of selected frames (Random baseline). 

Table 3 shows performance in the T only training is consistently and, in most cases 
substantially, lower than performance for the target languages when S data is added (S+T). 
This demonstrates again the benefits of multilingual training and confirms that it is worth 
using multilingual data for training frame identification models when it is available. 
 

5.2 Analysis of the Frame Selection Model 
Finally, we ask whether we can analyze the performance prediction model in order to better 
understand how embedding properties of frames are related to the improvement for this 
frame when adding target language annotation, ∆F. Unfortunately, it turns out that the three 
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properties that we have defined (coherence, nearest neighbor distance, and within-frame 
variance) show a high degree of collinearity – which is not surprising, given that coherence 
is defined as a ratio of the other two properties. As a consequence, the coefficients of the 
performance prediction model lose their interpretability (e.g., McNamee 2005).  
For this reason, we excluded the coherence of a frame (Co(F)) from this analysis and 
estimated a simpler model including only two normalized predictors, namely nearest 
neighbor distance (Dist) and within-frame variance (Var). The results are shown in Table 4. 
We initially hypothesized (cf. Section 3.2.1) that 1) the more dissimilar the instances of the 
frame are to one another, the more it will profit from target language annotation, and 2) the 
smaller the distance between a frame and its nearest neighbor, the more it will profit from 
target language annotation. The coefficients confirm only Hypothesis #1, where a high 
within-frame variance is very significant in predicting a higher ∆F. The other property (Dist) 
does not significantly contribute to the prediction of ∆F, indicating that the separation from 
the nearest neighbor frame is possibly an oversimplification as a measure of the difficulty to 
model a frame.  
 

Predictor Coeff Std. Error p value 
Nearest neighbor distance (Dist) 0.005 0.07 >0.10 
Within-frame variance (Var) 0.21 0.07 <0.01 

Table 4 - Estimated coefficients and p-values for two embedding-based frame properties in a simplified performance 
prediction linear regression model. 

 

5.3 Analysis of Frame-Level Performance 
We now proceed with an analysis of the frame transfer method and the comparability of 
frames at the lexicographic level – that is, how well frame definitions are aligned across 
languages. While the transfer method relied solely on available annotations in the 
supplementary language, our analysis below looks at the lexicon in both languages, where 
we compare the performance of frames with high cross-lingual comparability in terms of 
their lexicographic entries versus frames that are thought to have low lexicographic 
comparability. 
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Figure 3 - Correlation between similarities in the frame definitions (“Frame Type”) and model performance (“F1 Scores”) 
for frames selected for annotation. Frames are either modified across languages and therefore diverge lexicographically 
(“modified”) or they have the same definition across language pairs (“same”). Language pairs are in the form <T-S>  
(e.g., DE-EN is DE as T and EN as S) where results are tested over T test data. For the “Supplementary only” condition 
(dark bars), we report absolute F1 scores for performance, while “Improvement w/+10k” shows the average increase in 
F1 score (light bars) after the frame type was added. 

5.3.1 Similarity in Frame Definitions 
The German and French FrameNets distinguish between frames that have been modified 
from the original English FrameNet definition and those that are consistent with English. We 
take the frames that were selected for annotation in the target language and ask whether there 
is a difference in the performance gains across these two frame types (“same” and “modified” 
in their cross-lingual definition). In Table 1, there are 22 cases of German frames that are 
listed in both categories; for example, the COGITATION frame has two entries in SALSA, 
one with modified semantic roles and the other which has retained the English definition. 
We disregard these cases from our analyses. 

Figure 3 shows that, for all language pairs except one (EN-DE), the selection of 
modified frames led to higher improvement. The JUSTIFYING frame, where the definition 
diverges across all three languages (showed in Figure 1), is one of the frames consistently 
selected by our model for all language pairs.  One possible reason for this is that the frames 
which are described as the same across the resources are already learned sufficiently by S, 
leading to lower gains in multilingual training; for instance, the CAUSATION frame was 
not modified across any language pair, and was never selected as a target for further, 
language-specific annotations.  When we compare absolute F1 scores of the S only model, 
the results are mixed – only two of the language pairs support this hypothesis (FR-DE, EN-
DE), while other language pairs (FR-EN, DE-EN) show similar F1 scores for both frame 
types. However, modified frames predominately benefit from the target language 
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annotations, suggesting that researchers building frame semantic resources for different 
languages should focus more on these modified frames. If it is the case that researchers 
should target modified frames for annotation, the question might then arise: how would they 
know whether a frame should be modified? 

Evidence from previous studies suggest that typological differences between 
languages can be expected to affect the frame lexicon in a target language (Boas, 2005, 2020), 
but those typological differences can be predictable to a certain extent. Hasegawa et al. 
(2011) identify cases of frames in English that are primarily composed of transitive verbs 
and tend to translate poorly in Japanese because Japanese typically prefers to describe events 
as stative (Ikegami, 1991). These frames would be expected to require modification if one 
were to build a frame lexicon in Japanese. Beyond typological differences, analysis of 
parallel corpora has indicated substantial freedom for translators regarding the linguistic 
realization of the same event: Torrent et al. (2018) find shifts in the part of speech of certain 
frame-evoking lemmas to cause different frame assignments across translations; Padó and 
Erk (2005) investigates cases where the contribution of a single frame-evoking element is 
split among multiple frame-evoking elements in translation. Systematic mining of parallel 
and comparable corpora could make it feasible for researchers working on a target language 
to get an idea of specific frames that could require modification, and therefore would warrant 
annotation. 
 
5.3.2 Frames with high/low performance in S only training 
We take results from the S only model to see which frames performed best across different 
language pairs. In this condition, no T annotations were used in training, but frame 
performance is measured over T. As shown in Table 5, many of the frames with the highest 
F1 scores across the EN-DE pair are those whose predicates form a tight semantic cluster; 
for example, the KINSHIP frame whose predicates are all familial relationships (brother, 
sister, grandfather, etc.) or the PEOPLE frame which consists of terms relating to humans 
(man, woman, child). Frames that perform well with only supplementary data are those with 
low variance within a frame (tight clustering of its instances - in this case, predicates), 
indicating that they are easier to learn when they form a tight cluster. This is opposite to the 
results we find in the performance prediction model, where we predict the frames with high 
variance will need more target language data to learn. Other explanations of these results 
include the fact that the lexical units in these frames are largely nominal, and their valency 
patterns are less likely to differ significantly across languages.  

Performance for French frames are harder to interpret. Recall from Section 4.2.2 that 
the set of annotated frames in French was limited to four specific domains. Many of the high 
performing French frames (COMMERCIAL_TRANSACTION, COMMERCE_BUY, 
COMMERCE_SELL, IMPORTING) are in the commerce domain, while frames from 
cognitive stances or communication (QUESTIONING, REGARD, 
COMMUNICATION_RESPONSE, JUDGMENT_DIRECT_ADDRESS, CONTACTING) 
tend to appear as low performing cross-lingually. However, the change in domain covaries 
with other properties: The majority of lexical units (60%) from the commerce domain are 
nominal predicates, while predicates from the cognitive stance and communication domains 
are largely verbal (only 28% and 23% nominal, respectively) (Djemaa et al., 2016). This 
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aligns with observations from EN-DE, where the part of speech of the lexical units across 
languages has a strong impact on cross-lingual performance. It is also possible that the 
predicates are clustered more tightly in the commerce domain than the other three domains. 
Ultimately, however, the small number of French frames does not admit a strong 
interpretation of these findings. 
 

 
German 

EN
  

High 
 

Low 

F
R

  
High 

 
Low 

MEMBERSHIP 
PEOPLE 
CALENDRIC_UNIT 

TOPIC 
EXPERTISE 
FILLING 

COMMUNICATION_RE
SPONSE 
TEXT_CREATION 
REASON 

COMING_TO_ BELIEVE 
QUESTIONING 
JUDGMENT_DIRECT_ADDRESS 

English 

D
E

 

 
High 

 
Low 

FR
 

 
High 

 
Low 

PART_WHOLE 
PEOPLE_BY_AGE 
KINSHIP 

TAKING_TIME 
SIMILARITY 
JUSTIFYING 

EXPORTING 
COMMERCIAL_TRANS
ACTION 
ATTRIBUTED_INFORM
ATION 

ENCODING 
DESERVING 
REGARD 

French 

EN
 

 
High 

 
Low 

D
E

 

 
High 

 

Low 
COMMERCIAL_TRANS
ACTION 
DECIDING 
IMPORTING 

CONTACTING 
PROVING 
CAUSE_EARNING 

COMMERCE_BUY 
COMMERCE_SELL 
REFERRING_BY_NAME 

JUSTIFYING 
COMING_TO_ BELIEVE 
COMMUNICATION_ RESPONSE 

Table 5 - Frames with top F1 scores from the S only model (High) and the lowest F1 scores (Low). Columns (EN, FR, 
DE) show S languages, rows (German, English, French) show the target (T) languages. 

 
 
6 Conclusion 
The question of the universality of frames has been posed since the beginning of the theory 
of frame semantics (Fillmore, 1982, Boas, 2005, 2020). In fact, comparable frames have 
been found across even typologically unrelated languages such as English and Japanese, 
presumably due to the fact that frames allow a certain degree of variation in how they can be 
expressed (Hasegawa et al., 2014). At the same time, frame identification and, more broadly, 
frame semantic parsing, all require annotated data. Many languages do not have the resources 
to invest in a full-scale frame annotation project that would lead to a practically usable 
automatic frame identification system. As computational linguists, we can ask whether we 
can supplement some of the annotation needs for a target language by existing annotations 
in other languages. 

This study was, to our knowledge, the first one to investigate this question of learning 
frame identification models based on multilingual embeddings. We defined a method that 
selects frames for annotation in the target language based on estimates of a frame’s 
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transferability. To make this estimate, we use features of semantic coherence. Compared to 
a setting in which we do not use any target language annotation (which yields promising but 
still ultimately low performance), we found that informed frame selection can construct 
usable frame identification models within a manageable annotation budget. The most 
important factor in frame selection, according to our model, is frame-internal variance: 
Frames which have a more compact cluster in the supplementary language, meaning their 
predicates all form a relatively coherent group, require less target language annotation than 
frames that were spread out more. We find this is the case even when the number of instances 
per frame (200) that we randomly select is relatively modest, and the number of frames (25 
frames maximum in 5k, 50 frames maximum in 10k) are also modest. This validates our 
approach that one can still see improvement in target language frame identification with only 
a modest, fixed number of frame instances. 

In a post-hoc analysis, we established that, overwhelmingly, the frames that were 
selected yield better results when they have lexicographic definitions which diverge across 
languages. One plausible explanation for this result is that these lexicographic modifications 
were motivated by typological differences across the language pairs such as lexicalization or 
syntactic valence, which emerge as divergences in the semantic representations of the frames 
in the computational model. Therefore, these modified frames are more useful for selection, 
as they help refine a supplementary-based language model to learn the specific properties of 
frames for the target language. 

It cannot be overlooked that the makeup of the frame annotations themselves could 
have played a large role in the utility of cross-lingual data for frame identification. While 
much prior work in computational linguistics has shown that datasets with sometimes 
significant divergences in certain semantic role labeling schema (a subtask of frame semantic 
parsing) can still be combined for improved results (Akbik and Li, 2016, Feizabadi and Padó, 
2015), we find that the combination of different frame annotations alone does not lead to the 
greatest possible gains. In fact, there are significant differences in the numbers of instances 
of each frame that have been annotated, as well as the variety of predicates that evoke those 
frames. For instance, the German SALSA resource (Burchardt et al., 2006) has one frame 
(POLITICAL_LOCALES) with nearly 1k annotations for a single predicate (Land.n), while 
each predicate is annotated exactly 100 times in the French FrameNet (Candito et al., 2014). 
While we controlled for these differences in our selection method by only taking a random 
sample of 200 instances per frame, it is possible that these differences have an effect when 
only using supplementary language annotations. Future work could involve controlling for 
these effects by taking only a fixed number of frame instances from supplementary data in 
training for a target language. 

Our study considered three languages that are among those languages with the largest 
frame-semantic resources (English, German, and French). It is clear that generalization of 
our results must consider that these languages are typologically close to one another 
(although see Burchardt et al., 2009a), and many potential target languages are more 
dissimilar to these supplementary languages. Naturally, an important avenue of future 
research is the generalization of our frame selection to a broader range of target languages. 
As we described earlier, the Multilingual FrameNet alignment tool (described in Section 
4.4.1) could be another promising way to gauge frames that would require more annotation 
for target language frame identification, as these frames would have poorer cross-lingual 
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alignment of their lexical units. However, it would be straightforward to extend our 
framework to other languages as we observe that a target language model already sees 
impressive gains with 5k instances of annotated data, which is a small requirement for frame 
annotation. 
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