Manual for DependencyVectors 2.0

Sebastian Pado
Computational Linguistics
Saarland University
pado@ol i . uni-sb. de

December 22, 2004

This is a semi-technical document on how to use the DEPENDENCY VECTORS software package
to produce dependency-based vector spaces. The concept of dependency spaces and ideas as to
their applications can be found in [1] and [2]. The installation is described in the README file;
implementation details can be found in the j avadoc documentation (see READVE).

Contents

1 Licence 2

2 Using DEPENDENCYVECTORS 2
2.1 Architecture . . . . . . ... 2
2.2 UsingExtractBasisElenents .. ... .................. 2
23 UsingExtractSpace . ... ... ... .. ..., 4
24 UsingLLT . . . . . e 5

3 File formats 6
3.1 Targetsfile. . . . . ... 6
3.2 Target/BE frequency file . . . . .. ... ... 6
3.3 Total path frequency file . . . .. ... ... .. ... ... . L 6
3.4 Mectorsfile . .. ... .. 6
3.5 Context specificationfile . . . ... ... ... ... ... .. .. ....... 6

4 Modifications and extensions 6
4.1 Usinganother parser . . . . . . . . . . i i e e 6
4.2 Using a different basis mapping function . . . . . .. ... ... ... .. ... 7
4.3 Adding new context specifications . . . .. ... ... .. . L. 7
4.4  Adding new path value functions . . . . . ... ... ... . ... L 7

5 Version history 7



1 Licence

Copyright © 2003/2004 Sebastian Pad6. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. You should have received a copy of the
GNU FDL in the file f dl . t xt ; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA or check ht t p: / / ww. gnu. or g.

The DEPENDENCY VECTORS software package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of the GNU GPL in the file gpl . t xt ;
if not, write to the Free Software Foundation, Inc., 59 Templ e Place, Suite 330, Boston, MA
02111-1307 USA or check htt p: / / www. gnu. or g.

2 Using DEPENDENCYVECTORS

2.1 Architecture

The DEPENDENCY VECTORS software package contains three programs, corresponding to three
steps of constructing a dependency-based semantic space model.

1. Ext ract Basi sEl enment s: Choice of basis elements. Different from traditional word-
based semantic space models, which usually use the most frequent context words, DE-
PENDENCY VECTORS models can use any set of basis elements (BEs). These have to be
extracted (together with their frequencies) from the corpus in the first step. Addition-
ally, Ext r act Basi sEl enent s extracts frequencies for the target words and the total
number of paths which are necessary for step 3.

2. Extract Space: Construction of semantic space. This constructs an actual DEPEN-
DENCY VECTORS semantic space model from a corpus, given targets and basis elements.

3. LLT: Log-likelihood transformation. This performs a log likelihood transformation on a
semantic space (optional).

It is recommended to call the three programs through the shell scripts in bi n/ . They commu-
nicate through files; the flow of information can be seen in Figure 1. All files in the middle
row are stored in the directory specified by the option t ar get di r and are named according
to a naming convention (see Table 1) that reflects the fact that the two main parameters of the
extraction are the context specification and path value functions. Currently, change of the basis
mapping function is only possible by recompiling; the default is the . All programs support the
concurrent processing of files with diffent parameters (see below).

2.2 Using Extract Basi sEl enent s

This program extracts basis elements. Since there may be (too) many, if a lexical basis map-
ping (like the default) is used, Ext r act Basi sEl ement s supports purging, i.e. the regular



Target words Corpus

Ext r act Basi SEl enent s | |[Extract Space|
| Total freq | |BE fregs | | Target freqs|  |Raw vector file| |Log vector file
LLT

Figure 1: Flow of Information in DEPENDENCY VECTORS

File Naming convenion
Target frequencies Cs_pv.targets
BE frequencies CcS_pv. bes

Total frequency cs_pv.total
Raw vectors Cs_pv.vectors
Log-transformed vectors | cs_pv. vectors

Table 1: Naming convention for files in t ar get di r (cs is name of context specification, pv
name of path value function).



removal of the most infrequent basis elements. This is implemented as follows: if the list con-
tains more than maxsi ze/ r at i o elements, the list is shortened to naxsi ze elements. This
guarantees that at every point, maxsi ze reliable basis elements are available.

—corpus <name> : Location of corpus (default: System.in)

—cutoff <int> : Ratio of basis elements to be deleted in each purge (default: 0.3)
—help : Display help and exit.

—log <file> : Destination for the log file (default: log.txt)

—maxsize <int> : Desired number of basis elements (default: 10000)

—spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCY VECTORS distribution comes with four specs:
contextspec_{ninimal, mediumrich, w de}.txt

—targets <file> : File containing target words
—targetdir <file> : Data directory, used for writing output files (see Figure 1).

—plain | —length | —oblique | —oblength : Path value functions provided by the standard
DEPENDENCY VECTORS distribution (default: all)

If either - spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets in the target directory. Example call for
Extract Basi sEl ement s:

zcat bnc. parsetrees. gz | bin/ExtractBasi skl enents. sh
--targets targetsfile --targetdir data/bnc/
--plain --spec contextspec_ninimal.txt

Note that after Ext r act Basi sEl enent s is a good opportunity to sort out unwanted basis
elements according to frequency or any other criterion; see the definition of the frequency file
format below.

2.3 Using Ext ract Space

This program extracts semantic spaces, given sets of targets and basis elements. It supports
incremental space building (to obtain learning curves) by using the - ever y option. The central
data structure is implemented in two different ways. The default implementation is faster, but
uses much memory. For the concurrent extraction of multiple spaces, | recommend using the
-smal | option which may be slower, but saves memory?.

—corpus <name> : Location of corpus (default: System.in)

'Note that the maximum size of processes on 32-hit machines is limited to about 1.8 GB



—every <num> : Incrementally write semantic space every <num> corpus bytes to file
targetdir/cs_pv.vectors. <i ndex>

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—small : Uses Semantic Space class with small memory footprint (recommended for concur-
rent extracting of multiple spaces, but possibly slower)

—spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCY VECTORS distribution comes with four specs:
cont ext spec_{mini mal , medi um rich, wi de}. t xt

—targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

—plain | —length | —oblique | —oblength : Path value functions provided by the standard
DEPENDENCY VECTORS distribution (default: all)

If either - spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets in the target directory. Example call for
Extract Space:

zcat bnc. parsetrees. gz | bin/Extract Space. sh
--targetdir data/bnc/ --every 10000000
--plain --spec contextspec_ninimal.txt

2.4 Using LLT

This program performs a log-likelihood transformation on a semantic spaces. In keeping with
the arguments of the other programs, the name of the vector file is also specified by the context
spec and path value functions, which again allows for concurrent processing.

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCY VECTORS distribution comes with four specs:
cont ext spec_{mini mal, nedi um rich, wi de}. t xt

—targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

—plain | —length | —oblique | —oblength : Path value functions provided by the standard
DEPENDENCY VECTORS distribution (default: all)

Example call for LLT to convert spaces for all context specifications:

bi n/ Extract Space.sh --targetdir data/bnc/ --plain



3 File formats

This section lists the formats of the various files.

3.1 Targetsfile

One word (target) per line, everything else ignored. No comments allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), the target or basis element, and (2), its fre-
quency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of a Double.

3.4 \ectors file

The first line contains a tab-separated list of all basis elements. All following lines contain first
the target that is represented by that line, then a colon, and then the vector as a space-separated
list of Doubles.

3.5 Context specifi cation file

The context specifications are stored in external files. Lines that begin with # are treated as
comments and ignored, as are empty lines. Lines that specify path templates contain one or
more edge templates, which are separated by =. Each edge template is a five-tuple, separated by
colons (: ). The first and second tokens specify the lemma and part of speech of the source node.
The third token is the dependency relation label of the edge. The fourth and fifth tokens are the
part of speech and lemma of the target node. For every of these tokens, users can specify the
asterisk (*), which will match everything. For examples, see the provided context specification
files.

4 Modifi cations and extensions

If you implement any modifications or extensions to the DEPENDENCY VECTORS package, |
would be very interested in hearing from you and merging the new code into the main develop-
ment branch. If you have any trouble in understanding what’s going on, let me know.

4.1 Using another parser

This should (only) require extending or replacing the Cor pus class, which can at the moment
only parse MINIPAR-analysed corpora.



4.2 Using adifferent basis mapping function

This requires rewriting (only) the Par arret er s. basi sMappi ng method.

4.3 Adding new context specifi cations

This requires putting the new context specification files (format see above) into the directory
I i b/ cont ext specs and adding the name to the Par anet er s. al | CSFi | es array.

4.4 Adding new path value functions

This requires extending the Par aret er s. pat hval ue method.

5 Version history

e \ersion 1.0 (September 2002): First version.
e Version 1.1 (July 2003)

— New feature: LLT for log-likelihood transformation.
— New feature: Support for MINIPAR “full parses” format.
— Doc: First PS documentation.

e \ersion 2.0 (November 2004)

Doc: Thorough documentation of code.
Doc: Revised PS documentation.

Implementation: Complete refactorisation of classes.

Implementation: All programs use t ar get di r now.

Implementation: Introduction of packaging scheme and Makefi | e.

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Models from Parsed Corpora. Pro-
ceedings of ACL-03, Sapporo.

[2] S.Pado and M. Lapata: Dependency-based semantic space models. Submitted.



