
Manual for DependencyVectors 2.1a

Sebastian Pado
Computational Linguistics, Saarland University

pado@coli.uni-sb.de

This is a semi-technical document on how to use the DEPENDENCYVECTORSsoftware package
to produce dependency-based vector spaces. The concept of dependency spaces and ideas as to
their applications can be found in [1] and [2]. The installation is described in theREADME file;
implementation details can be found in thejavadoc documentation (seeREADME).

Contents

1 Licence 2

2 Using D EPENDENCYVECTORS 2
2.1 Architecture .. . 2
2.2 UsingExtractBasisElements . 2
2.3 UsingExtractSpace . 4
2.4 UsingLLT . 5
2.5 Example . 6

3 File formats 6
3.1 Targets file .. 6
3.2 Target/BE frequency file 6
3.3 Total path frequency file 6
3.4 Vectors file . 6
3.5 Context specification file 6

4 Modifications and extensions 7
4.1 Using another parser 7
4.2 Using a different basis mapping function 7
4.3 Adding new context specifications 7
4.4 Adding new path value functions 7

5 Bugs 7

6 Version history 8

1

1 Licence

Copyright c©2003/2004 Sebastian Padó. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. You should have received a copy of the GNU
FDL in the filefdl.txt; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA or checkhttp://www.gnu.org.

The DEPENDENCYVECTORSsoftware package is released under the terms of the GNU General
Public License. You should have received a copy of the GNU GPLin the filegpl.txt; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA or checkhttp://www.gnu.org.

2 Using D EPENDENCYVECTORS

2.1 Architecture

The DEPENDENCYVECTORSsoftware package contains three programs, corresponding to three
steps of constructing a dependency-based semantic space model.

1. ExtractBasisElements: Choice of basis elements. Different from traditional word-
based semantic space models, which usually use the most frequent context words, DEPEN-
DENCYVECTORSmodels can use any set of basis elements (BEs). These have to be extracted
(together with their frequencies) from the corpus in the first step. Additionally,
ExtractBasisElements extracts frequencies for the target words and the total number
of paths which are necessary for step 3.

2. ExtractSpace: Construction of semantic space. This constructs an actualDEPENDEN-
CYVECTORSsemantic space model from a corpus, given targets and basis elements.

3. LLT: Log-likelihood transformation. This performs a log likelihood transformation on a se-
mantic space (optional).

It is recommended to call the three programs through the shell scripts inbin/. They communicate
through files; the flow of information can be seen in Figure 1. All files in the middle row are
stored in the directory specified by the optiontargetdir and are named according to a naming
convention (see Table 1) that reflects the fact that the two main parameters of the extraction are the
context specification and path value functions. Currently,change of the basis mapping function is
only possible by recompiling; the default is the . All programs support the concurrent processing of
files with diffent parameters (see below).

2.2 Using ExtractBasisElements

This program extracts basis elements. Since there may be (too) many, if a lexical basis mapping
(like the default) is used,ExtractBasisElements supportspurging, i.e. the regular removal
of the most infrequent basis elements. This is implemented as follows: if the list contains more than
maxsize/ratio elements, the list is shortened tomaxsize elements. This guarantees that at
every point,maxsize reliable basis elements are available.

2

ExtractBasisElements ExtractSpace

LLT

Target words Corpus

Target freqsBE freqsTotal freq Raw vectorgfile Log vector file

Figure 1: Flow of Information in DEPENDENCYVECTORS

File Naming convenion
Target frequencies cs_pv.targets
BE frequencies cs_pv.bes
Total frequency cs_pv.total
Raw vectors cs_pv.vectors
Log-transformed vectors cs_pv.vectors

Table 1: Naming convention for files intargetdir (cs is name of context specification,pv name
of path value function).

3

–corpus <name> : Location of corpus (default: System.in)

–cutoff <int> : Ratio of basis elements to be deleted in each purge (default: 0.3)

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–maxsize <int> : Desired number of basis elements (default: 10000)

–spec <file> : Name of file with context specification (default: all). The standard DEPENDEN-
CYVECTORSdistribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt. The prefixcontextspec
is added automatically.

–targets <file> : File containing target words

–targetdir <file> : Data directory, used for writing output files (see Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard DE-
PENDENCYVECTORSdistribution (default: all)

If either -spec or the path value function is omitted, the extraction is run for all available val-
ues of that parameter, resulting in different file sets in thetarget directory.1 Example call for
ExtractBasisElements:

zcat bnc.parsetrees.gz | bin/ExtractBasisElements.sh
--targets targetsfile --targetdir data/bnc/
--plain --spec minimal.txt

Note that afterExtractBasisElements is a good opportunity to sort out unwanted basis ele-
ments according to frequency or any other criterion; see thedefinition of the frequency file format
below.

2.3 Using ExtractSpace

This program extracts semantic spaces, given sets of targets and basis elements. It supports incre-
mental space building (to obtain learning curves) by using the-every option. The central data
structure is implemented in two different ways. The defaultimplementation is faster, but uses much
memory. For the concurrent extraction of multiple spaces, Irecommend using the-small option
which may be slower, but saves memory2.

–corpus <name> : Location of corpus (default: System.in)

–every <num> : Incrementally write semantic space every <num> corpus bytes to file
targetdir/cs_pv.vectors.<index>

1The list of all context specifications is read from the variable Parameters.allCSFiles, and the list of all path
value functions fromParameters.allValuations.

2Note that the maximum size of processes on 32-bit machines islimited to about 1.8 GB

4

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–small : Uses Semantic Space class with small memory footprint (recommended for concurrent
extracting of multiple spaces, but possibly slower)

–spec <file> : Name of file with context specification (default: all). The standard DEPENDEN-
CYVECTORSdistribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt. The prefixcontextspec
is added automatically.

–targetdir <file> : Data directory, used for reading input files and writing output files (see Fig-
ure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard DE-
PENDENCYVECTORSdistribution (default: all)

–nofrequencies : Do not complain about missing frequencies in basis elementand target files
(see below).

If either-spec or the path value function is omitted, the extraction is run for all available values of
that parameter, resulting in different file sets in the target directory. Example call forExtractSpace:

zcat bnc.parsetrees.gz | bin/ExtractSpace.sh
--targetdir data/bnc/ --every 10000000
--plain --spec minimal.txt

Having individual target and basis element files for different parametrisations may seem unneces-
sary. However, recall that these files also contain frequencies (computed, for example, by
ExtractBasisElements). These typically vary between parameterisations and are necessary
for computing log likelihoods.

To enable the extraction of semantic spaces with “raw counts”, ExtractSpaces can run with-
out this frequency information, but this is disabled by default as a security measure. Specify
-nofrequencies if you want to enable this mode.

2.4 Using LLT

This program performs a log-likelihood transformation on asemantic spaces. In keeping with the
arguments of the other programs, the name of the vector file isalso specified by the context spec
and path value functions, which again allows for concurrentprocessing.

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–spec <file> : Name of file with context specification (default: all). The standard DEPENDEN-
CYVECTORSdistribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt.Theprefixcontextspec is
added automatically.

5

–targetdir <file> : Data directory, used for reading input files and writing output files (see Fig-
ure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard DE-
PENDENCYVECTORSdistribution (default: all)

Example call forLLT to convert spaces for all context specifications:

bin/LLT.sh --targetdir data/bnc/ --plain

2.5 Example

The directorysample contains a “minimal” running example for creating a semantic space: a two-
sentence corpus in “full” format (sample_corpus_full) and triple format
(sample_corpus_triples) as well as a set of two target words (targets). Executing the
scriptcreate_space.sh will run the complete pipeline and create a space in the subdirectory
vectors.

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No comments allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), the target or basis element, and (2), its frequency.
No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of a Double.

3.4 Vectors file

The first line contains a tab-separated list of all basis elements. All following lines contain first the
target that is represented by that line, then a colon, and then the vector as a space-separated list of
Doubles.

3.5 Context specification file

The context specifications are stored in external files. Lines that begin with# are treated as com-
ments and ignored, as are empty lines. Lines that specify path templates contain one or more edge
templates, which are separated by=. Each edge template is a five-tuple, separated by colons (:).
The first and second tokens specify the lemma and part of speech of the source node. The third
token is the dependency relation label of the edge. The fourth and fifth tokens are the part of speech

6

and lemma of the target node. For every of these tokens, userscan specify the asterisk (*), which
will match everything. For examples, see the provided context specification files.

4 Modifications and extensions

If you implement any modifications or extensions to the DEPENDENCYVECTORSpackage, I would
be very interested in hearing from you and merging the new code into the main development branch.
If you have any trouble in understanding what’s going on, letme know.

Almost all modifications and extensions should be possible by modifying exactly one place in the
code, since all frontends (ExtractBasisElements,ExtractSpace, andLLT) use the same
backend libraries.

4.1 Using another parser

This should (only) require extending or replacing theCorpus class, which can at the moment only
parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires overwriting (only) theParameters.basisMapping method. For example, the
following code extracts [word, grammatical relation] pairs as basis elements instead of words:

static public String basisMapping(Path path) {
Edge lastEdge = (Edge) path.get(path.size()-1);
return lastEdge.getToNode().getWord()+"_"+lastEdge.getRelation();

}

4.3 Adding new context specifications

This requires putting the new context specification files (format see above) into the directory
lib/contextspecs and adding the name to theParameters.allCSFiles array. The file-
names of context specification files must start withcontextspec_.

4.4 Adding new path value functions

New path value functions can be added by extending theif valuation.equals(X) branch
in theParameters.pathValuemethod. The names of the new path value functions also have
to be recorded in theParameters.allValuations array. This makes them permissible com-
mand line arguments, and they can be called with-X.

5 Bugs

It is entirely possible that there are still bugs in the system. If you encounter one, please let me
know, and I will try to fix it. (Note that fixing bugs is easier and faster the more detailed the error
report; it would be optimal if you could send me a “minimal example”).

7

Note that Vector Spaces computed with one parameter settingare not guaranteed to be inter-
pretable with different settings, so if weird errors occur,first make sure that you haven’t modified
the parameters between two runs.

6 Version history

• Version 1.0 (September 2002): First version.

• Version 1.1 (July 2003)

– New feature:LLT for log-likelihood transformation.

– New feature: Support for MINIPAR “full parses” format.

– Doc: First PS documentation.

• Version 2.0 (November 2004)

– Doc: Thorough documentation of code.

– Doc: Revised PS documentation.

– Implementation: Complete refactorisation of classes.

– Implementation: All programs usetargetdir now.

– Implementation: Introduction of packaging scheme andMakefile.

• Version 2.1 (May 2007)

– Doc: revised documentation

– Implementation: Administration of command line argumentscentralised

– FrequencyList andSemanticSpaceArray debugged.

– LLT debugged.

• Version 2.1a (July 2007)

– Minor debugging.

– Added usage sample.

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Models from Parsed Corpora. Proceed-
ings of ACL, Sapporo, 2003.

[2] S. Pado and M. Lapata: Dependency-based semantic space models. Computational Linguistics
33(2), 161-199. 2007.

8

