Manual for DependencyVectors 2.4

Sebastian Pado
Dept. of Linguistics
Stanford University

pado@t anf ord. edu

This is a semi-technical document on how to use the DEPENDENCY VECTORS software package
to produce dependency-based vector spaces. The concept of dependency spaces and ideas as to
their applications can be found in [1], [2], [3], [4]. The installation is described in the READVE
file; implementation details can be found in the j avadoc documentation (see READVE).

Contents
1 Licence 2

2 Using DEPENDENCYVECTORS
2.1 By way of introduction: The sanpl edirectory
2.2 Architecture L e
2.3 UsingExtractBasisElenents
24 UsingExtractSpace
25 UsingLLT e
2.6 DetailsonStringHandling,

OO0 WNDNDN

3 File formats
3.1 Targetsfile.
3.2 Target/BE frequency file
3.3 Total path frequency file
3.4 Mectorsfile
3.5 Context specificationfile

~N NN NN~

4 Modifications and extensions
4.1 Usinganother parser i i e e
4.2 Using a different basis mapping function
4.3 Adding new context specifications L.
4.4 Adding new path value functions,

0O 0O 00 0O

5 Troubleshooting
51 Logfile. e
5.2 *Class def not found” when running one of the bi nscripts
5.3 Memory trouble: “Invalid maximum heap size" or “Out of memory"
54 Furtherbugs e

©O© ©O© © o

6 Version history 9

1 Licence

Copyright (© 2003-2008 Sebastian Pad6. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. You should have received a copy of the
GNU FDL in the file f dl . t xt ; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA or check ht t p: / / www. gnu. or g.

The DEPENDENCY VECTORS software package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of the GNU GPL in the file gpl . t xt ;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA or check ht t p: / / www. gnu. or g.

2 Using DEPENDENCYVECTORS

2.1 By way of introduction: The sanpl e directory

The directory sanpl e contains a “minimal” running example for creating a semantic space: a
two-sentence corpus in “full” format (sanpl e_cor pus_f ul |)and triple format

(sanpl e_corpus_tripl es) as well as a set of two target words (t ar get s). Executing
either of the scripts creat e_space. sh or creat e_space_tri pl es. sh will run the
complete pipeline and create a space in the subdirectory vect or s. These scripts can serve as
templates for own calls of the DEPENDENCY VECTORS pipeline.

2.2 Architecture

The DEPENDENCY VECTORS software package contains three programs, corresponding to three
steps of constructing a dependency-based semantic space model.

1. Ext ract Basi sEl erment s: Choice of basis elements. Different from traditional word-
based semantic space models, which usually use the most frequent context words, DE-
PENDENCY VECTORS models can use any set of basis elements (BEs). These have to be
extracted (together with their frequencies) from the corpus in the first step. Additionally,
Ext r act Basi sEl enent s extracts frequencies for the target words and the total num-
ber of paths which are necessary for step 3.

2. Extract Space: Construction of semantic space. This constructs an actual DEPEN-
DENCY VECTORS semantic space model from a corpus, given targets and basis elements.

3. LLT: Log-likelihood transformation. This performs a log likelihood transformation on a
semantic space (optional).

It is recommended to call the three programs through the shell scripts in bi n/ . They commu-
nicate through files; the flow of information can be seen in Figure 1. All files in the middle
row are stored in the directory specified by the option t ar get di r and are named according
to a naming convention (see Table 1) that reflects the fact that the two main parameters of the
extraction are the context specification and path value functions. Currently, change of the basis
mapping function is only possible by recompiling; the default is the . All programs support the
concurrent processing of files with diffent parameters (see below).

Target words Corpus

| Ext r act Basi sEl enent s | |[Extract Space|
| Total freq | |BE fregs | | Target freqs | | Raw vector file| |Log vector file
LLT

Figure 1: Flow of Information in DEPENDENCY VECTORS

File Naming convenion
Target frequencies Cs_pv.targets

BE frequencies cs_pv. bes

Total frequency Cs_pv.total

Raw vectors CsS_pv.vectors
Log-transformed vectors | cs_pv. I | .vectors

Table 1: Naming convention for files in t ar get di r (cs is name of context specification, pv
name of path value function).

2.3 Using Ext r act Basi sEl enent s

This program extracts basis elements. Since there may be (too) many, if a lexical basis map-
ping (like the default) is used, Ext r act Basi sEl enent s supports purging, i.e. the regular

removal of the most infrequent basis elements. This is implemented as follows: if the list con-
tains more than maxsi ze/ r at i o elements, the list is shortened to maxsi ze elements. This
guarantees that at every point, maxsi ze reliable basis elements are available.

—corpus <name> : Location of corpus (default: System.in)

—cutoff <int> : Ratio of basis elements to be deleted in each purge (default: 0.3)
—help : Display help and exit.

—log <file> : Destination for the log file (default: log.txt)

—maxsize <int> : Desired number of basis elements (default: 10000)

—spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCY VECTORS distribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt. The prefixcont ext spec
is added automatically.

—targets <file> : File containing target words
—targetdir <file> : Data directory, used for writing output files (see Figure 1).

—plain | —length | —oblique | —oblength : Path value functions provided by the standard
DEPENDENCY VECTORS distribution (default: all)

—basisMapping <bm> : Basis mapping function (no default). Currently available: | ex (use
words as dimensions of the semantic space) and gr anl ex (use word-dependency relation
pairs as dimensions of the semantic space).

If either - spec or the path value function is omitted, the extraction is run for all available values
of that parameter, resulting in different file sets in the target directory.® If the basis Mapping is
not given, the program quits. Example call for Ext r act Basi sEl enent s:

zcat bnc. parsetrees.gz | bin/ExtractBasi skl enents. sh
--targets targetsfile --targetdir data/bnc/
--plain --spec mninmal.txt

Note that after Ext r act Basi sEl enent s is a good opportunity to sort out unwanted basis
elements according to frequency or any other criterion; see the definition of the frequency file
format below.

The list of all context specifi cations is read from the variable Par anet er s. al | CSFi | es, and the list of al
path value functions from Par anet er s. al | Val uati ons.

2.4 Using Ext ract Space

This program extracts semantic spaces, given sets of targets and basis elements. It supports
incremental space building (to obtain learning curves) by using the - ever y option. The central
data structure is implemented in two different ways. The default implementation is faster, but
uses much memory. For the concurrent extraction of multiple spaces, | recommend using the
-smal | option which may be slower, but saves memory?.

—corpus <name> : Location of corpus (default: System.in)

—every <num> : Incrementally write semantic space every <num> corpus bytes to file
targetdir/cs_pv.vectors. <i ndex>

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—small : Uses Semantic Space class with small memory footprint (recommended for concur-
rent extracting of multiple spaces, but possibly slower)

—spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCY VECTORS distribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt. The prefixcont ext spec
is added automatically.

—targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

—plain | —length | —oblique | —oblength : Path value functions provided by the standard
DEPENDENCY VECTORS distribution (default: all)

—nofrequencies : Do not complain about missing frequencies in basis element and target files
(see below).

—basisMapping <bm> : Basis mapping function (no default). Currently available: | ex (use
words as dimensions of the semantic space) and gr anl ex (use word-dependency relation
pairs as dimensions of the semantic space).

If either - spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets in the target directory. Example call for
Ext ract Space:

zcat bnc. parsetrees.gz | bin/Extract Space. sh
--targetdir data/bnc/ --every 10000000
--plain --spec mnimal.txt

2Note that the maximum size of processes on 32-bit machinesis limited to about 1.8 GB. See also Section 5.3.

Having individual target and basis element files for different parametrisations may seem unnec-
essary. However, recall that these files also contain frequencies (computed, for example, by
Ext ract Basi sEl emrent s). These typically vary between parameterisations and are neces-
sary for computing log likelihoods. Note that if you haven’t computed the basis elements for
all these parametrisations, the program will presumably fail while trying to open these files and
give you surprising error messages.

To enable the extraction of semantic spaces with “raw counts”, Ext r act Spaces can run
without this frequency information, but this is disabled by default as a security measure. Specify
- nof r equenci es if you want to enable this mode.

2.5 Using LLT

This program performs a log-likelihood transformation on a semantic spaces. In keeping with
the arguments of the other programs, the name of the vector file is also specified by the context
spec and path value functions, which again allows for concurrent processing.

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCY VECTORS distribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt .Theprefix cont ext spec
is added automatically.

—targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

—plain | —length | —oblique | —oblength : Path value functions provided by the standard
DEPENDENCY VECTORS distribution (default: all)

Example call for LLT to convert spaces for all context specifications:
bi n/LLT.sh --targetdir data/bnc/ --plain

2.6 Details on String Handling

MINIPAR shows a somewhat unusual behaviour for parsers in that multi-word expressions can
occur as single nodes; these nodes are labelled with strings including spaces. To correctly han-
dle these cases, spaces (and a small number of other special characters) are replaced during
processing. The replacements are given in Table 2. In addition, all words are lowercased, to
generalise over the capitalisation of first words in sentenes. The replacements are defined (and
can be altered) in the class M ni par Encodi ng. For technical reasons, it is not recommended
that targets or basis elements contain spaces.

This replacement takes place both for corpora, and for the lists of basis elements and tar-
get words read from files. As consequence, target word lists written by DEPENDENCY VEC-
TORS into the target data directory can differ from the original target word lists in terms of target
normalisation. For example, mull over will be replaced by mull_over.

old new

: _COLON_

\t _TAB_

" (double quote) | (empty string)
\S (space) _ (underscore)
‘ _BACKTI CK_

Table 2: String Replacements in Corpus, Target, and BE expressions

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No comments allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), the target or basis element, and (2), its fre-
quency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of a Double.

3.4 Vectors file

The first line contains a tab-separated list of all basis elements. All following lines contain first
the target that is represented by that line, then a colon, and then the vector as a space-separated
list of Doubles.

3.5 Context specification file

The context specifications are stored in external files. Lines that begin with # are treated as
comments and ignored, as are empty lines. Lines that specify path templates contain one or
more edge templates, which are separated by =. Each edge template is a five-tuple, separated by
colons (:). The first and second tokens specify the lemma and part of speech of the source node.
The third token is the dependency relation label of the edge. The fourth and fifth tokens are the
part of speech and lemma of the target node. For every of these tokens, users can specify the
asterisk (*), which will match everything. For examples, see the provided context specification
files.

4 Modifi cations and extensions

If you implement any modifications or extensions to the DEPENDENCY VECTORS package, |
would be very interested in hearing from you and merging the new code into the main develop-
ment branch. If you have any trouble in understanding what’s going on, let me know.

Almost all modifications and extensions should be possible by modifying exactly one place
in the code, since all frontends (Ext r act Basi sEl ement s, Ext ract Space,and LLT) use
the same backend libraries.

4.1 Using another parser

This should (only) require extending or replacing the Cor pus class, which can at the moment
only parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires two changes. First, a new class must be written that implements the Basi sMappi ng
interface. See the top of Par anet er s. | ava for the two built-in basis mapping functions as
examples. Second, a new case must be added to the (i f mappi ng. equal s conditional in
the Par anet er s() constructor.

4.3 Adding new context specifications

This requires putting the new context specification files (format see above) into the directory
I'i b/ cont ext specs and adding the name to the Par anet er s. al | CSFi | es array. The
filenames of context specification files must start with cont ext spec_.

4.4 Adding new path value functions

New path value functions can be added by extending thei f val uati on. equal s(X) branch
in the Par anet er s. pat hVal ue method. The names of the new path value functions also
have to be recorded in the Par anet er s. al | Val uat i ons array. This makes them permis-
sible command line arguments, and they can be called with - X.

5 Troubleshooting

5.1 Logfile

Each module records all important events, such as errors, in a file called |1 og. t xt in the
targetdi r. If the output does not look as expected, this file might be worth a look. Note,
however, that this file is overwritten if subsequent modules are run one after another (e.g., first
Ext ract Basi sEl ement s and then Ext r act Space).

5.2 “Class def not found” when running one of the bi n scripts

You need to run the makefile first (make).

5.3 Memory trouble: “Invalid maximum heap size" or “Out of memory"

Java requires that the heap size is specified when the VM is started. This means that | needed to
fix the heap size to some constant; | picked 1 GB for all classes that are called from the command
line. Depending on your requirements, this may be too little or too much.

e If you have a machine with 1 GB memory or less, you will likely see a “could not allocate
memory” error.

e On the other hand, if you try to compute a huge space, you will likely see an “out of mem-
ory” error when DEPENDENCY VECTORS attempts to allocate space for its data structures.

You can change the heap size with the compiler switch -Xmx<size>. The easiest way to do that is
to change the j ava - Xmx1Gstatement in the bash scripts in bi n/ ,e.g. toj ava - Xnx500m
(less memory) or to j ava - Xmx5G(more memory).

A final complication is that programs of such sizes run into the limitations of 32-bit memory
addressing. 32-bit Java can usually deal with heap spaces up to around 1.6GB, but not more.
Thus, if you need to compute larger spaces, you will either need to split the target words into
multiple batches, find a 64-bit machine with 64-bit Java to use, or implement more memory-
efficient data structures (please let me know if you do that ;-)).

5.4 Further bugs

It is entirely possible that there are still bugs in the system. If you encounter one, please let me
know, and I will try to fix it. (Note that fixing bugs is easier and faster the more detailed the error
report; it would be optimal if you could send me a “minimal example”).

Note that Vector Spaces computed with one parameter setting are not guaranteed to be inter-
pretable with different settings, so if weird errors occur, first make sure that you haven’t modified
the parameters between two runs.

6 Version history

e \ersion 1.0 (September 2002): First version.
e \ersion 1.1 (July 2003)

— New feature: LLT for log-likelihood transformation.
— New feature: Support for MINIPAR “full parses” format.
— Doc: First PS documentation.

e \ersion 2.0 (November 2004)

Doc: Thorough documentation of code.
Doc: Revised PS documentation.

Implementation: Complete refactorisation of classes.

Implementation: All programs use t ar get di r now.

Implementation: Introduction of packaging scheme and Makefi | e.

Version 2.1 (May 2007)

Doc: revised documentation

Implementation: Administration of command line arguments centralised

FrequencylLi st and Sermant i cSpaceAr r ay debugged.
LLT debugged.

Version 2.1a (July 2007)

— Minor debugging.
— Added usage sample.

Version 2.2 (August 2007)

— More general recognition of the triples vs. full MINIPAR format
— More general handling of lemmas

Version 2.3 (January 2008)

— Bugfixes (handling of antecedents; handling of default context specification)

Version 2.3a (March 2008)

— More bugfixes (handling of brittle log transformation)

Version 2.4 (July 2008)

Two bugfixes in triple format reader (thanks to Bram Vandekerckhove)

Principled handling of multiple edges in triple format
Move to Java 5

Modular specification of basis mapping function

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Models from Parsed Corpora. Pro-
ceedings of ACL 2003. Sapporo, Japan.

[2] S.Pado and M. Lapata: Dependency-based semantic space models. Computational Linguis-
tics 33(2), 161-199. 2007.

10

[3] S.Pado and U. Pado and K. Erk: Flexible, Corpus-Based Modelling of Human Plausibility
Judgements. Proceedings of EMNLP-CoNLL 2007. Prague, Czech Republic

[4] S. Pado, M. Pennacchiotti, and C. Sporleder: Towards semantic role labelling for event

nominalisations through bootstrapping from verbal data. Proceedings of COLING 2008.
Manchester, UK.

11

