
Manual for DependencyVectors 2.0

Sebastian Pado
Computational Linguistics

Saarland University
pado@coli.uni-sb.de

September 2, 2005

This is a semi-technical document on how to use the DEPENDENCYVECTORS software package
to produce dependency-based vector spaces. The concept of dependency spaces and ideas as to
their applications can be found in [1] and [2]. The installation is described in the README file;
implementation details can be found in the javadoc documentation (see README).

Contents

1 Licence 2

2 Using DEPENDENCYVECTORS 2
2.1 Architecture . 2
2.2 Using ExtractBasisElements . 2
2.3 Using ExtractSpace . 4
2.4 Using LLT . 5

3 File formats 6
3.1 Targets file . 6
3.2 Target/BE frequency file . 6
3.3 Total path frequency file . 6
3.4 Vectors file . 6
3.5 Context specification file . 6

4 Modifications and extensions 7
4.1 Using another parser . 7
4.2 Using a different basis mapping function . 7
4.3 Adding new context specifications . 7
4.4 Adding new path value functions . 7

5 Version history 7

1

1 Licence

Copyright c© 2003/2004 Sebastian Padó. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. You should have received a copy of the
GNU FDL in the file fdl.txt; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA or check http://www.gnu.org.

The DEPENDENCYVECTORS software package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of the GNU GPL in the file gpl.txt;
if not, write to the Free Software Foundation, Inc., 59 Templ e Place, Suite 330, Boston, MA
02111-1307 USA or check http://www.gnu.org.

2 Using DEPENDENCYVECTORS

2.1 Architecture

The DEPENDENCYVECTORS software package contains three programs, corresponding to three
steps of constructing a dependency-based semantic space model.

1. ExtractBasisElements: Choice of basis elements. Different from traditional word-
based semantic space models, which usually use the most frequent context words, DE-
PENDENCYVECTORS models can use any set of basis elements (BEs). These have to be
extracted (together with their frequencies) from the corpus in the first step. Addition-
ally, ExtractBasisElements extracts frequencies for the target words and the total
number of paths which are necessary for step 3.

2. ExtractSpace: Construction of semantic space. This constructs an actual DEPEN-
DENCYVECTORS semantic space model from a corpus, given targets and basis elements.

3. LLT: Log-likelihood transformation. This performs a log likelihood transformation on a
semantic space (optional).

It is recommended to call the three programs through the shell scripts in bin/. They commu-
nicate through files; the flow of information can be seen in Figure 1. All files in the middle
row are stored in the directory specified by the option targetdir and are named according
to a naming convention (see Table 1) that reflects the fact that the two main parameters of the
extraction are the context specification and path value functions. Currently, change of the basis
mapping function is only possible by recompiling; the default is the . All programs support the
concurrent processing of files with diffent parameters (see below).

2.2 Using ExtractBasisElements

This program extracts basis elements. Since there may be (too) many, if a lexical basis map-
ping (like the default) is used, ExtractBasisElements supports purging, i.e. the regular

2

ExtractBasisElements ExtractSpace

LLT

Target words Corpus

Target freqsBE freqsTotal freq Raw vectorgfile Log vector file

Figure 1: Flow of Information in DEPENDENCYVECTORS

File Naming convenion
Target frequencies cs_pv.targets
BE frequencies cs_pv.bes
Total frequency cs_pv.total
Raw vectors cs_pv.vectors
Log-transformed vectors cs_pv.vectors

Table 1: Naming convention for files in targetdir (cs is name of context specification, pv
name of path value function).

3

removal of the most infrequent basis elements. This is implemented as follows: if the list con-
tains more than maxsize/ratio elements, the list is shortened to maxsize elements. This
guarantees that at every point, maxsize reliable basis elements are available.

–corpus <name> : Location of corpus (default: System.in)

–cutoff <int> : Ratio of basis elements to be deleted in each purge (default: 0.3)

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–maxsize <int> : Desired number of basis elements (default: 10000)

–spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCYVECTORS distribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt

–targets <file> : File containing target words

–targetdir <file> : Data directory, used for writing output files (see Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard
DEPENDENCYVECTORS distribution (default: all)

If either -spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets in the target directory. Example call for
ExtractBasisElements:

zcat bnc.parsetrees.gz | bin/ExtractBasisElements.sh
--targets targetsfile --targetdir data/bnc/
--plain --spec contextspec_minimal.txt

Note that after ExtractBasisElements is a good opportunity to sort out unwanted basis
elements according to frequency or any other criterion; see the definition of the frequency file
format below.

2.3 Using ExtractSpace

This program extracts semantic spaces, given sets of targets and basis elements. It supports
incremental space building (to obtain learning curves) by using the -every option. The central
data structure is implemented in two different ways. The default implementation is faster, but
uses much memory. For the concurrent extraction of multiple spaces, I recommend using the
-small option which may be slower, but saves memory1.

–corpus <name> : Location of corpus (default: System.in)

1Note that the maximum size of processes on 32-bit machines is limited to about 1.8 GB

4

–every <num> : Incrementally write semantic space every <num> corpus bytes to file
targetdir/cs_pv.vectors.<index>

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–small : Uses Semantic Space class with small memory footprint (recommended for concur-
rent extracting of multiple spaces, but possibly slower)

–spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCYVECTORS distribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt

–targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard
DEPENDENCYVECTORS distribution (default: all)

–nofrequencies : Do not complain about missing frequencies in basis element and target files
(see below).

If either -spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets in the target directory. Example call for
ExtractSpace:

zcat bnc.parsetrees.gz | bin/ExtractSpace.sh
--targetdir data/bnc/ --every 10000000
--plain --spec contextspec_minimal.txt

Having individual target and basis element files for different parametrisations may seem unnec-
essary. However, recall that these files also contain frequencies (computed, e.g., by ExtractBasisElements).
These typically vary between parameterisations and are necessary for computing the log like-
lihood. ExtractSpaces itself can run without this frequency information, but this is disabled by
default as a security measure. Specify -nofrequencies if you want to enable this mode.

2.4 Using LLT

This program performs a log-likelihood transformation on a semantic spaces. In keeping with
the arguments of the other programs, the name of the vector file is also specified by the context
spec and path value functions, which again allows for concurrent processing.

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

5

–spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCYVECTORS distribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt

–targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard
DEPENDENCYVECTORS distribution (default: all)

Example call for LLT to convert spaces for all context specifications:

bin/LLT.sh --targetdir data/bnc/ --plain

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No comments allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), the target or basis element, and (2), its fre-
quency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of a Double.

3.4 Vectors file

The first line contains a tab-separated list of all basis elements. All following lines contain first
the target that is represented by that line, then a colon, and then the vector as a space-separated
list of Doubles.

3.5 Context specification file

The context specifications are stored in external files. Lines that begin with # are treated as
comments and ignored, as are empty lines. Lines that specify path templates contain one or
more edge templates, which are separated by =. Each edge template is a five-tuple, separated by
colons (:). The first and second tokens specify the lemma and part of speech of the source node.
The third token is the dependency relation label of the edge. The fourth and fifth tokens are the
part of speech and lemma of the target node. For every of these tokens, users can specify the
asterisk (*), which will match everything. For examples, see the provided context specification
files.

6

4 Modifications and extensions

If you implement any modifications or extensions to the DEPENDENCYVECTORS package, I
would be very interested in hearing from you and merging the new code into the main develop-
ment branch. If you have any trouble in understanding what’s going on, let me know.

4.1 Using another parser

This should (only) require extending or replacing the Corpus class, which can at the moment
only parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires rewriting (only) the Parameters.basisMappingmethod.

4.3 Adding new context specifications

This requires putting the new context specification files (format see above) into the directory
lib/contextspecs and adding the name to the Parameters.allCSFiles array.

4.4 Adding new path value functions

This requires extending the Parameters.pathValuemethod.

5 Version history

• Version 1.0 (September 2002): First version.

• Version 1.1 (July 2003)

– New feature: LLT for log-likelihood transformation.

– New feature: Support for MINIPAR “full parses” format.

– Doc: First PS documentation.

• Version 2.0 (November 2004)

– Doc: Thorough documentation of code.

– Doc: Revised PS documentation.

– Implementation: Complete refactorisation of classes.

– Implementation: All programs use targetdir now.

– Implementation: Introduction of packaging scheme and Makefile.

7

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Models from Parsed Corpora. Pro-
ceedings of ACL-03, Sapporo.

[2] S. Pado and M. Lapata: Dependency-based semantic space models. Submitted.

8

