Manual for DependencyVectors 2.2

Sebastian Pado
Computational Linguistics
Saarland University
pado@ol i . uni-sb. de

This is a semi-technical document on how to use tlE@ENDENCYW ECTORSSOftware package

to produce dependency-based vector spaces. The concegpperidkbncy spaces and ideas as to
their applications can be found in [1] and [2]. The instadiatis described in thREADVE file;
implementation details can be found in fh@vadoc documentation (SEREADVE).

Contents

1 Licence 2

2 Using D EPENDENCYVECTORS 2
2.1 Architecture . . . . . . .. 2
2.2 UsingextractBasisElements . ... ... ... ... .. ........ 4
2.3 UsingExtractSpace . . .. .. . . .. . i 5
2.4 UsingLLT . . . . . 6
25 Example . . . . . 6
2.6 DetailsonStringHandling . . . . ... ... ... ... ... ... ... 6

3 File formats 7
3.1 Targetsfile. . . . . . . . . . e 7
3.2 Target/BE frequencyfile . . ... ... ... .. ... .. ... ... ... 7
3.3 Total path frequencyfile . .. ... ... ... ... ... ......... 7
3.4 Vectorsfile . . . . . . e 7
3.5 Context specificationfile . ... ... ... ... .. .. ... ...... 7

4 Modifications and extensions

4.1
4.2
4.3
4.4

Using anotherparser . . . . . . . . . . . . @ it
Using a different basis mapping function . . . . . . .. .. . ... ... ..
Adding new context specifications . . . .. ... ... ... ... ...,
Adding new path value functions . . . . . .. ... .. ... ... . ...,

0 0 o 0 ®©



5 Bugs 8

6 Version history 9

1 Licence

Copyright(© 2003-2007 Sebastian Padd. Permission is granted to capybdie and/or modify
this document under the terms of the GNU Free Documentaticenise, Version 1.2 or any later
version published by the Free Software Foundation. You Ishbave received a copy of the
GNU FDL in the filef dl . t xt ; if not, write to the Free Software Foundation, Inc., 59 Ténp
Place, Suite 330, Boston, MA 02111-1307 USA or chietk p: / / www. gnu. or g.

The DEPENDENCYW ECTORSSsOftware package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of th&J@&WL in the filegpl . t xt ;
if not, write to the Free Software Foundation, Inc., 59 TemBlace, Suite 330, Boston, MA
02111-1307 USA or chechkt t p: / / www. gnu. or g.

2 Using D EPENDENCYVECTORS

2.1 Architecture

The DEPENDENCW ECTORSSOftware package contains three programs, corresponditigde
steps of constructing a dependency-based semantic spatz. mo

1. Extr act Basi sEl enment s: Choice of basis elements. Different from traditional word
based semantic space models, which usually use the mosefreqontext words, B-
PENDENCYVECTORSModels can use any set of basis elements (BEs). These hage to b
extracted (together with their frequencies) from the cerjputhe first step. Additionally,

Ext r act Basi sEl enent s extracts frequencies for the target words and the total num-
ber of paths which are necessary for step 3.

2. Extract Space: Construction of semantic space. This constructs an a@QealEN
DENCYVECTORSsemantic space model from a corpus, given targets and basigigts.

3. LLT: Log-likelihood transformation. This performs a log likebod transformation on a
semantic space (optional).

It is recommended to call the three programs through thd sbiepts inbi n/ . They commu-
nicate through files; the flow of information can be seen inukégl. All files in the middle
row are stored in the directory specified by the opticar get di r and are named according
to a naming convention (see Table 1) that reflects the fattttieatwo main parameters of the
extraction are the context specification and path valuetiome. Currently, change of the basis
mapping function is only possible by recompiling; the défaithe . All programs support the
concurrent processing of files with diffent parameters (sgew).



Target word% Corpu

|Ext r act Basi sEl ement s| |[Ext ract Space|

| Total freq| |BE freqs| [ Target freqg  |Raw vectorfile | |Log vector file

LLT

Figure 1: Flow of Information in BPENDENCW ECTORS

File Naming convenion
Target frequencies cs_pv.targets
BE frequencies Ccs_pv. bes

Total frequency cs_pv.total
Raw vectors CS_pv.vectors
Log-transformed vectors cs_pv. vect or s

Table 1: Naming convention for files inar get di r (cs is name of context specificatiopy
name of path value function).



2.2 Using Extract Basi sEl enent s

This program extracts basis elements. Since there may b rttany, if a lexical basis map-
ping (like the default) is usedExt r act Basi sEl enent s supportspurging, i.e. the regular
removal of the most infrequent basis elements. This is implged as follows: if the list con-
tains more thamaxsi ze/ r at i o elements, the list is shortenednaxsi ze elements. This
guarantees that at every poingxsi ze reliable basis elements are available.

—corpus <name> : Location of corpus (default: System.in)

—cutoff <int> : Ratio of basis elements to be deleted in each purge (defagit
—help : Display help and exit.

—log <file> : Destination for the log file (default: log.txt)

—maxsize <int> : Desired number of basis elements (default: 10000)

—spec <file> : Name of file with context specification (default: all). Thersdard DEPEN-
DENCYVECTORSdistribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt. The prefixcont ext spec
is added automatically.

—targets <file> : File containing target words
—targetdir <file> : Data directory, used for writing output files (see Figure 1)

—plain | —length | —oblique | —oblength ~ : Path value functions provided by the standard
DEPENDENCY ECTORSdistribution (default: all)

If either - spec or the path value function is omitted, the extraction is rondll available
values of that parameter, resulting in different file setthimtarget directory. Example call for
Ext ract Basi sEl enent s:

zcat bnc. parsetrees.gz | bin/ExtractBasi skl ements. sh
--targets targetsfile --targetdir data/bnc/
--plain --spec mnimal.txt

Note that aftefExt r act Basi sEl enent s is a good opportunity to sort out unwanted basis
elements according to frequency or any other criterion;teeedefinition of the frequency file
format below.

The list of all context specifications is read from the valeaBar anet er s. al | CSFi | es, and the list of all
path value functions frorPar anmet er s. al | Val uati ons.



2.3 Using Extract Space

This program extracts semantic spaces, given sets of saayet basis elements. It supports
incremental space building (to obtain learning curves) éipgithe- ever y option. The central
data structure is implemented in two different ways. Thedkfimplementation is faster, but
uses much memory. For the concurrent extraction of multgplaces, | recommend using the
-smal | option which may be slower, but saves menfory

—corpus <name> : Location of corpus (default: System.in)

—every <num> : Incrementally write semantic space every <num> corpussid file
targetdir/cs_pv.vectors. <i ndex>

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—small : Uses Semantic Space class with small memory footprinb(resended for concur-
rent extracting of multiple spaces, but possibly slower)

—spec <file> : Name of file with context specification (default: all). Tharsdard EPEN-
DENCYVEcCTORSdistribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt. The prefixcont ext spec
is added automatically.

—targetdir <file> : Data directory, used for reading input files and writing patfiles (see
Figure 1).

—plain | —-length | —oblique | —oblength . Path value functions provided by the standard
DEPENDENCW ECTORSdistribution (default: all)

—nofrequencies : Do not complain about missing frequencies in basis elemedtarget files
(see below).

If either - spec or the path value function is omitted, the extraction is ron dll available
values of that parameter, resulting in different file setthmtarget directory. Example call for
Extract Space:

zcat bnc. parsetrees.gz | bin/ExtractSpace. sh
--targetdir data/bnc/ --every 10000000
--plain --spec mninal.txt

Having individual target and basis element files for différparametrisations may seem unnec-
essary. However, recall that these files also contain fregjae (computed, for example, by
Ext ract Basi sEl enent s). These typically vary between parameterisations and eres:
sary for computing log likelihoods.

To enable the extraction of semantic spaces with “raw cSuiitst r act Spaces can run
without this frequency information, but this is disabledd®sfault as a security measure. Specify
- nof r equenci es if you want to enable this mode.

2Note that the maximum size of processes on 32-bit machifesited to about 1.8 GB



2.4 Using LLT

This program performs a log-likelihood transformation osegmantic spaces. In keeping with
the arguments of the other programs, the name of the veatasfilso specified by the context
spec and path value functions, which again allows for careotipprocessing.

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—spec <file> : Name of file with context specification (default: all). Tharsdard EPEN-
DENCYVECTORSdistribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt .The prefixcont ext spec
is added automatically.

—targetdir <file> . Data directory, used for reading input files and writing puitfiles (see
Figure 1).

—plain | —length | —oblique | —oblength ~ : Path value functions provided by the standard
DEPENDENCY ECTORSdistribution (default: all)

Example call folLLT to convert spaces for all context specifications:

bi n/ LLT. sh --targetdir data/bnc/ --plain

2.5 Example

The directorysanpl e contains a “minimal” running example for creating a semaspace: a
two-sentence corpus in “full” formas@npl e_cor pus_f ul | )and triple format

(sanpl e_cor pus_tri pl es)as well as a set of two target wordsa get s). Executing the
scriptcr eat e_space. shwill run the complete pipeline and create a space in the setidiry

vectors.

2.6 Details on String Handling

MINIPAR shows a somewhat unusual behaviour for parsersanrtiulti-word expressions can
occur as single nodes; these nodes are labelled with siriofygling spaces. To correctly han-
dle these cases, spaces (and a small number of other speaiakcters) are replaced during
processing. The replacements are given in Table 2. In additll words are lowercased, to
generalise over the capitalisation of first words in serderiéde replacements are defined (and
can be altered) in the clad4 ni par Encodi ng. For technical reasons, it is not recommended
that targets or basis elements contain spaces.

This replacement takes place both for corpora, and for #te bf basis elements and tar-
get words read from files. As consequence, target word lisisenw by DEPENDENCWEC-
TORSinto the target data directory can differ from the origireiget word lists in terms of target
normalisation. For examplenull overwill be replaced bymull_over



old new

: _COLON_

\t _TAB_

" (double quote) (empty string)
\s (space) _ (underscore)
‘ _BACKTI CK_

Table 2: String Replacements in Corpus, Target, and BE sgjmes

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No cants allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), theetawg basis element, and (2), its fre-
guency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of aldi®ou

3.4 Vectors file

The first line contains a tab-separated list of all basis et@m All following lines contain first
the target that is represented by that line, then a colontlamlthe vector as a space-separated
list of Doubles.

3.5 Context specification file

The context specifications are stored in external files. d.itat begin with# are treated as
comments and ignored, as are empty lines. Lines that sppaify templates contain one or
more edge templates, which are separated.tiyach edge template is a five-tuple, separated by
colons (). The first and second tokens specify the lemma and part etspaf the source node.
The third token is the dependency relation label of the edge. fourth and fifth tokens are the
part of speech and lemma of the target node. For every of ttodeas, users can specify the
asterisk £ ), which will match everything. For examples, see the predidontext specification
files.



4 Modifications and extensions

If you implement any modifications or extensions to thePBENDENCW ECTORSpackage, |
would be very interested in hearing from you and merging #a& node into the main develop-
ment branch. If you have any trouble in understanding whgdiag on, let me know.

Almost all modifications and extensions should be possiglenbdifying exactly one place
in the code, since all frontendgxt r act Basi sEl ement s, Ext ract Space,andLLT) use
the same backend libraries.

4.1 Using another parser

This should (only) require extending or replacing e pus class, which can at the moment
only parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires overwriting (only) th@ar anet er s. basi sMappi nhg method. For example,
the following code extracts [word, grammatical relatiorgins as basis elements instead of
words:

static public String basi sMappi ng(Path path) {

Edge | ast Edge = (Edge) path. get(path.size()-1);

return | ast Edge. get ToNode().getWrd()+" "+l ast Edge. get Rel ati on();
}

4.3 Adding new context specifications

This requires putting the new context specification filesnifat see above) into the directory
I'i b/ cont ext specs and adding the name to tiiRar anet er s. al | CSFi | es array. The
filenames of context specification files must start witint ext spec_.

4.4 Adding new path value functions

New path value functions can be added by extending theval uat i on. equal s( X) branch

in the Par anet er s. pat hVal ue method. The names of the new path value functions also
have to be recorded in thear anet er s. al | Val uat i ons array. This makes them permis-
sible command line arguments, and they can be called-with

5 Bugs

It is entirely possible that there are still bugs in the systéf you encounter one, please let me
know, and | will try to fix it. (Note that fixing bugs is easierdifaster the more detailed the error
report; it would be optimal if you could send me a “minimal exae”).



Note that Vector Spaces computed with one parameter settengot guaranteed to be inter-
pretable with different settings, so if weird errors ocdust make sure that you haven’t modified
the parameters between two runs.

6 Version history

e \ersion 1.0 (September 2002): First version.
Version 1.1 (July 2003)

— New feature:LLT for log-likelihood transformation.
— New feature: Support for MINIPAR “full parses” format.
— Doc: First PS documentation.

Version 2.0 (November 2004)

Doc: Thorough documentation of code.

Doc: Revised PS documentation.

Implementation: Complete refactorisation of classes.
Implementation: All programs udear get di r now.
Implementation: Introduction of packaging scheme kh#efi | e.

Version 2.1 (May 2007)

Doc: revised documentation

Implementation: Administration of command line argumeggatralised
FrequencylLi st andSemant i cSpaceAr r ay debugged.

LLT debugged.

Version 2.1a (July 2007)

— Minor debugging.
— Added usage sample.

Version 2.2 (August 2007)

— More general recognition of the triples vs. full MINIPAR foat
— More general handling of lemmas

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Mddmih Parsed Corpora. Pro-
ceedings of ACL, Sapporo, 2003.

[2] S.Padoand M. Lapata: Dependency-based semantic sgasdsnComputational Linguis-
tics 33(2), 161-199. 2007.



