Manual for DependencyVectors 2.3

Sebastian Padd
Dept. of Linguistics
Stanford University
pado@ol i . uni-sb. de

This is a semi-technical document on how to use tlE@ENDENCYW ECTORSSOftware package

to produce dependency-based vector spaces. The concegiaridbncy spaces and ideas as to
their applications can be found in [1] and [2]. The instatiatis described in th&EADVE file;
implementation details can be found in fh@vadoc documentation (SEREADVE).

Contents

1 Licence 2

2 Using D EPENDENCYVECTORS 2
2.1 Architecture e 2
2.2 UsingextractBasisElements 4
2.3 UsingExtractSpace i 5
2.4 UsingLLT 6
25 Example 6
2.6 DetailsonStringHandling 6

3 File formats 7
3.1 Targetsfile. e 7
3.2 Target/BE frequencyfile 7
3.3 Total path frequencyfile 7
3.4 Vectorsfile 7
3.5 Context specificationfile 7

4 Modifications and extensions

4.1
4.2
4.3
4.4

Using anotherparser i
Using a different basis mapping function
Adding new context specifications,
Adding new path value functions,

0 0 o 0 ®©

5 Bugs 8

6 Version history 9

1 Licence

Copyright(© 2003-2008 Sebastian Padd. Permission is granted to cajrybdie and/or modify
this document under the terms of the GNU Free Documentaiicenke, Version 1.2 or any later
version published by the Free Software Foundation. You Ighbave received a copy of the
GNU FDL in the filef dl . t xt ; if not, write to the Free Software Foundation, Inc., 59 Témp
Place, Suite 330, Boston, MA 02111-1307 USA or chetk p: / / wwww. gnu. or g.

The DEPENDENCYW ECTORSSsOftware package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of th&J@&YPL in the filegpl . t xt ;
if not, write to the Free Software Foundation, Inc., 59 Tesnlace, Suite 330, Boston, MA
02111-1307 USA or chedkt t p: / / www. gnu. or g.

2 Using D EPENDENCYVECTORS

2.1 Architecture

The DEPENDENCW ECTORSSOftware package contains three programs, corresponalihgete
steps of constructing a dependency-based semantic spatz. mo

1. Extract Basi sEl enment s: Choice of basis elements. Different from traditional word
based semantic space models, which usually use the mosefreqontext words, B-
PENDENCYVECTORSMoOdels can use any set of basis elements (BEs). These hage to b
extracted (together with their frequencies) from the cerputhe first step. Additionally,

Ext r act Basi sEl enent s extracts frequencies for the target words and the total num-
ber of paths which are necessary for step 3.

2. Extract Space: Construction of semantic space. This constructs an a@lealEN
DENCYVECTORSsemantic space model from a corpus, given targets and hHesisms.

3. LLT: Log-likelihood transformation. This performs a log likedod transformation on a
semantic space (optional).

It is recommended to call the three programs through the sbbts inbi n/ . They commu-
nicate through files; the flow of information can be seen inukggl. All files in the middle
row are stored in the directory specified by the opti@r get di r and are named according
to a naming convention (see Table 1) that reflects the fatttieatwo main parameters of the
extraction are the context specification and path valuetiome. Currently, change of the basis
mapping function is only possible by recompiling; the défaithe . All programs support the
concurrent processing of files with diffent parameters tsdew).

Target word% Corpu

|Ext r act Basi sEl ement s| |[Ext ract Space|

| Total freq| |BE freqs| | Target freqg | Raw vectorfile | |Log vector file

LLT

Figure 1: Flow of Information in BPENDENCW ECTORS

File Naming convenion
Target frequencies cs_pv.targets
BE frequencies Ccs_pv. bes

Total frequency cs_pv.total
Raw vectors CS_pv.vectors
Log-transformed vectors cs_pv. vect or s

Table 1: Naming convention for files inar get di r (cs is nhame of context specificatiopy
name of path value function).

2.2 Using Extract Basi sEl enent s

This program extracts basis elements. Since there may bgrftany, if a lexical basis map-
ping (like the default) is usedExt r act Basi sEl enent s supportspurging, i.e. the regular
removal of the most infrequent basis elements. This is imptged as follows: if the list con-
tains more thamaxsi ze/ r at i o elements, the list is shortenedraxsi ze elements. This
guarantees that at every poinmgxsi ze reliable basis elements are available.

—corpus <name> : Location of corpus (default: System.in)

—cutoff <int> : Ratio of basis elements to be deleted in each purge (defagik
—help : Display help and exit.

—log <file> : Destination for the log file (default: log.txt)

—maxsize <int> : Desired number of basis elements (default: 10000)

—spec <file> : Name of file with context specification (default: all). Thersdard EPEN-
DENCYVECTORSdistribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt. The prefixcont ext spec
is added automatically.

—targets <file> : File containing target words
—targetdir <file> : Data directory, used for writing output files (see Figure 1)

—plain | —length | —oblique | —oblength ~ : Path value functions provided by the standard
DEPENDENCY ECTORSdistribution (default: all)

If either - spec or the path value function is omitted, the extraction is randll available
values of that parameter, resulting in different file sethantarget directory. Example call for
Ext ract Basi sEl enent s:

zcat bnc. parsetrees.gz | bin/ExtractBasi skl ements. sh
--targets targetsfile --targetdir data/bnc/
--plain --spec mnimal.txt

Note that aftelExt r act Basi sEl enent s is a good opportunity to sort out unwanted basis
elements according to frequency or any other criterion;tseealefinition of the frequency file
format below.

The list of all context specifications is read from the vaeaPar anet er s. al | CSFi | es, and the list of all
path value functions frorar amet er s. al | Val uati ons.

2.3 Using Extract Space

This program extracts semantic spaces, given sets of saaget basis elements. It supports
incremental space building (to obtain learning curves)diggithe- ever y option. The central
data structure is implemented in two different ways. Thedkfimplementation is faster, but
uses much memory. For the concurrent extraction of mulspigces, | recommend using the
-smal | option which may be slower, but saves menfory

—corpus <name> : Location of corpus (default: System.in)

—every <num> : Incrementally write semantic space every <num> corpusdig file
targetdir/cs_pv.vectors. <i ndex>

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—small : Uses Semantic Space class with small memory footprinb(maeended for concur-
rent extracting of multiple spaces, but possibly slower)

—spec <file> : Name of file with context specification (default: all). Tharsdard EPEN-
DENCYVECTORSdistribution comes with four specs:
cont ext spec_{m ni mal , medi um ri ch, wi de}. t xt. The prefixcont ext spec
is added automatically.

—targetdir <file> : Data directory, used for reading input files and writingputtfiles (see
Figure 1).

—plain | —-length | —oblique | —oblength . Path value functions provided by the standard
DEPENDENCW ECTORSdistribution (default: all)

—nofrequencies : Do not complain about missing frequencies in basis elemedtarget files
(see below).

If either - spec or the path value function is omitted, the extraction is ran dll available
values of that parameter, resulting in different file setthmtarget directory. Example call for
Extract Space:

zcat bnc. parsetrees.gz | bin/ExtractSpace. sh
--targetdir data/bnc/ --every 10000000
--plain --spec mninal.txt

Having individual target and basis element files for diffénearametrisations may seem unnec-
essary. However, recall that these files also contain fregjae (computed, for example, by
Ext ract Basi sEl enent s). These typically vary between parameterisations and ezesa
sary for computing log likelihoods.

To enable the extraction of semantic spaces with “raw culist r act Spaces can run
without this frequency information, but this is disabledd®sfault as a security measure. Specify
- nof r equenci es if you want to enable this mode.

2Note that the maximum size of processes on 32-bit machif&sited to about 1.8 GB

2.4 Using LLT

This program performs a log-likelihood transformation osemantic spaces. In keeping with
the arguments of the other programs, the name of the veatasfillso specified by the context
spec and path value functions, which again allows for caeatiprocessing.

—help : Display help and exit.
—log <file> : Destination for the log file (default: log.txt)

—spec <file> : Name of file with context specification (default: all). Tharsdard EPEN-
DENCYVECTORSdistribution comes with four specs:
cont ext spec_{m ni mal , nedi um ri ch, wi de}. t xt .The prefixcont ext spec
is added automatically.

—targetdir <file> . Data directory, used for reading input files and writingpuitfiles (see
Figure 1).

—plain | —length | —oblique | —oblength ~ : Path value functions provided by the standard
DEPENDENCY ECTORSdistribution (default: all)

Example call folLLT to convert spaces for all context specifications:

bi n/ LLT. sh --targetdir data/bnc/ --plain

2.5 Example

The directorysanpl e contains a “minimal” running example for creating a sentagfiace: a
two-sentence corpus in “full” formas@npl e_cor pus_f ul I) and triple format

(sanpl e_cor pus_tri pl es)as well as a set of two target wordsafr get s). Executing the
scriptcr eat e_space. shwill runthe complete pipeline and create a space in the setidiry

vectors.

2.6 Details on String Handling

MINIPAR shows a somewhat unusual behaviour for parsersanrttulti-word expressions can
occur as single nodes; these nodes are labelled with siriolygling spaces. To correctly han-
dle these cases, spaces (and a small number of other spleaiacters) are replaced during
processing. The replacements are given in Table 2. In additll words are lowercased, to
generalise over the capitalisation of first words in sergefide replacements are defined (and
can be altered) in the clad4 ni par Encodi ng. For technical reasons, it is not recommended
that targets or basis elements contain spaces.

This replacement takes place both for corpora, and for #te 6f basis elements and tar-
get words read from files. As consequence, target word lisittew by DEPENDENCW EC-
TORSinto the target data directory can differ from the origiraijet word lists in terms of target
normalisation. For examplepull overwill be replaced bymull_over

old new

: _COLON_

\t _TAB_

" (double quote) (empty string)
\s (space) _ (underscore)
‘ _BACKTI CK_

Table 2: String Replacements in Corpus, Target, and BE sgjues

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No cemis allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), theetasgbasis element, and (2), its fre-
guency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of abl@ou

3.4 Vectors file

The first line contains a tab-separated list of all basis etgm All following lines contain first
the target that is represented by that line, then a colontlaidthe vector as a space-separated
list of Doubles.

3.5 Context specification file

The context specifications are stored in external files. d.ithat begin with# are treated as
comments and ignored, as are empty lines. Lines that sppaify templates contain one or
more edge templates, which are separated.ldyach edge template is a five-tuple, separated by
colons (). The first and second tokens specify the lemma and part ethpa the source node.
The third token is the dependency relation label of the edpe.fourth and fifth tokens are the
part of speech and lemma of the target node. For every of tioksas, users can specify the
asterisk), which will match everything. For examples, see the predidontext specification
files.

4 Modifications and extensions

If you implement any modifications or extensions to thePEBNDENCW ECTORSpackage, |
would be very interested in hearing from you and merging the code into the main develop-
ment branch. If you have any trouble in understanding wiggtiag on, let me know.

Almost all modifications and extensions should be possiglenbdifying exactly one place
in the code, since all frontendgxt r act Basi sEl ement s, Ext ract Space,andLLT) use
the same backend libraries.

4.1 Using another parser

This should (only) require extending or replacing @er pus class, which can at the moment
only parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires overwriting (only) thBar anet er s. basi sMappi hg method. For example,
the following code extracts [word, grammatical relatiordirp as basis elements instead of
words:

static public String basi sMappi ng(Path path) {

Edge | ast Edge = (Edge) path. get(path.size()-1);

return | ast Edge. get ToNode().getWrd()+" "+l ast Edge. get Rel ati on();
}

4.3 Adding new context specifications

This requires putting the new context specification filesnffat see above) into the directory
I'i b/ cont ext specs and adding the name to tiiRar anet er s. al | CSFi | es array. The
filenames of context specification files must start witint ext spec_.

4.4 Adding new path value functions

New path value functions can be added by extending thesal uat i on. equal s(X) branch

in the Par anet er s. pat hVal ue method. The names of the new path value functions also
have to be recorded in thear anmet er s. al | Val uat i ons array. This makes them permis-
sible command line arguments, and they can be called-with

5 Bugs

It is entirely possible that there are still bugs in the systéf you encounter one, please let me
know, and | will try to fix it. (Note that fixing bugs is easierdifaster the more detailed the error
report; it would be optimal if you could send me a “minimal exae”).

Note that Vector Spaces computed with one parameter setténgot guaranteed to be inter-
pretable with different settings, so if weird errors ocdust make sure that you haven’t modified
the parameters between two runs.

6 Version history

Version 1.0 (September 2002): First version.
Version 1.1 (July 2003)

— New feature'LLT for log-likelihood transformation.
— New feature: Support for MINIPAR “full parses” format.
— Doc: First PS documentation.

Version 2.0 (November 2004)

Doc: Thorough documentation of code.

Doc: Revised PS documentation.

Implementation: Complete refactorisation of classes.
Implementation: All programs ugear get di r now.
Implementation: Introduction of packaging scheme khéefil e.

Version 2.1 (May 2007)

Doc: revised documentation

Implementation: Administration of command line argumesgstralised

Frequencyli st andSemant i cSpaceArr ay debugged.
LLT debugged.

Version 2.1a (July 2007)

— Minor debugging.
— Added usage sample.

Version 2.2 (August 2007)

— More general recognition of the triples vs. full MINIPAR foat
— More general handling of lemmas

Version 2.3 (January 2008)
— Budfixes (handling of antecedents; handling of default extpecification)
Version 2.3a (March 2008)

— More bugfixes (handling of brittle log transformation)

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Mddain Parsed Corpora. Pro-
ceedings of ACL, Sapporo, 2003.

[2] S.Pado and M. Lapata: Dependency-based semantic spatsdsnComputational Linguis-
tics 33(2), 161-199. 2007.

10

