
Manual for DependencyVectors 2.3

Sebastian Padó
Dept. of Linguistics
Stanford University

pado@coli.uni-sb.de

This is a semi-technical document on how to use the DEPENDENCYVECTORSsoftware package
to produce dependency-based vector spaces. The concept of dependency spaces and ideas as to
their applications can be found in [1] and [2]. The installation is described in theREADME file;
implementation details can be found in thejavadoc documentation (seeREADME).

Contents

1 Licence 2

2 Using D EPENDENCYVECTORS 2
2.1 Architecture . 2
2.2 UsingExtractBasisElements . 4
2.3 UsingExtractSpace . 5
2.4 UsingLLT . 6
2.5 Example . 6
2.6 Details on String Handling 6

3 File formats 7
3.1 Targets file . 7
3.2 Target/BE frequency file .. . 7
3.3 Total path frequency file .. . 7
3.4 Vectors file . 7
3.5 Context specification file 7

4 Modifications and extensions 8
4.1 Using another parser .. 8
4.2 Using a different basis mapping function 8
4.3 Adding new context specifications 8
4.4 Adding new path value functions 8

1

5 Bugs 8

6 Version history 9

1 Licence

Copyright c©2003-2008 Sebastian Padó. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. You should have received a copy of the
GNU FDL in the filefdl.txt; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA or checkhttp://www.gnu.org.

The DEPENDENCYVECTORSsoftware package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of the GNU GPL in the filegpl.txt;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA or checkhttp://www.gnu.org.

2 Using D EPENDENCYVECTORS

2.1 Architecture

The DEPENDENCYVECTORSsoftware package contains three programs, corresponding to three
steps of constructing a dependency-based semantic space model.

1. ExtractBasisElements: Choice of basis elements. Different from traditional word-
based semantic space models, which usually use the most frequent context words, DE-
PENDENCYVECTORSmodels can use any set of basis elements (BEs). These have to be
extracted (together with their frequencies) from the corpus in the first step. Additionally,
ExtractBasisElements extracts frequencies for the target words and the total num-
ber of paths which are necessary for step 3.

2. ExtractSpace: Construction of semantic space. This constructs an actualDEPEN-
DENCYVECTORSsemantic space model from a corpus, given targets and basis elements.

3. LLT: Log-likelihood transformation. This performs a log likelihood transformation on a
semantic space (optional).

It is recommended to call the three programs through the shell scripts inbin/. They commu-
nicate through files; the flow of information can be seen in Figure 1. All files in the middle
row are stored in the directory specified by the optiontargetdir and are named according
to a naming convention (see Table 1) that reflects the fact that the two main parameters of the
extraction are the context specification and path value functions. Currently, change of the basis
mapping function is only possible by recompiling; the default is the . All programs support the
concurrent processing of files with diffent parameters (seebelow).

2

ExtractBasisElements ExtractSpace

LLT

Target words Corpus

Target freqsBE freqsTotal freq Raw vectorgfile Log vector file

Figure 1: Flow of Information in DEPENDENCYVECTORS

File Naming convenion
Target frequencies cs_pv.targets
BE frequencies cs_pv.bes
Total frequency cs_pv.total
Raw vectors cs_pv.vectors
Log-transformed vectors cs_pv.vectors

Table 1: Naming convention for files intargetdir (cs is name of context specification,pv
name of path value function).

3

2.2 Using ExtractBasisElements

This program extracts basis elements. Since there may be (too) many, if a lexical basis map-
ping (like the default) is used,ExtractBasisElements supportspurging, i.e. the regular
removal of the most infrequent basis elements. This is implemented as follows: if the list con-
tains more thanmaxsize/ratio elements, the list is shortened tomaxsize elements. This
guarantees that at every point,maxsize reliable basis elements are available.

–corpus <name> : Location of corpus (default: System.in)

–cutoff <int> : Ratio of basis elements to be deleted in each purge (default: 0.3)

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–maxsize <int> : Desired number of basis elements (default: 10000)

–spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCYVECTORSdistribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt. The prefixcontextspec
is added automatically.

–targets <file> : File containing target words

–targetdir <file> : Data directory, used for writing output files (see Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard
DEPENDENCYVECTORSdistribution (default: all)

If either -spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets inthe target directory.1 Example call for
ExtractBasisElements:

zcat bnc.parsetrees.gz | bin/ExtractBasisElements.sh
--targets targetsfile --targetdir data/bnc/
--plain --spec minimal.txt

Note that afterExtractBasisElements is a good opportunity to sort out unwanted basis
elements according to frequency or any other criterion; seethe definition of the frequency file
format below.

1The list of all context specifications is read from the variable Parameters.allCSFiles, and the list of all
path value functions fromParameters.allValuations.

4

2.3 Using ExtractSpace

This program extracts semantic spaces, given sets of targets and basis elements. It supports
incremental space building (to obtain learning curves) by using the-every option. The central
data structure is implemented in two different ways. The default implementation is faster, but
uses much memory. For the concurrent extraction of multiplespaces, I recommend using the
-small option which may be slower, but saves memory2.

–corpus <name> : Location of corpus (default: System.in)

–every <num> : Incrementally write semantic space every <num> corpus bytes to file
targetdir/cs_pv.vectors.<index>

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–small : Uses Semantic Space class with small memory footprint (recommended for concur-
rent extracting of multiple spaces, but possibly slower)

–spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCYVECTORSdistribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt. The prefixcontextspec
is added automatically.

–targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard
DEPENDENCYVECTORSdistribution (default: all)

–nofrequencies : Do not complain about missing frequencies in basis elementand target files
(see below).

If either -spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets inthe target directory. Example call for
ExtractSpace:

zcat bnc.parsetrees.gz | bin/ExtractSpace.sh
--targetdir data/bnc/ --every 10000000
--plain --spec minimal.txt

Having individual target and basis element files for different parametrisations may seem unnec-
essary. However, recall that these files also contain frequencies (computed, for example, by
ExtractBasisElements). These typically vary between parameterisations and are neces-
sary for computing log likelihoods.

To enable the extraction of semantic spaces with “raw counts”, ExtractSpaces can run
without this frequency information, but this is disabled bydefault as a security measure. Specify
-nofrequencies if you want to enable this mode.

2Note that the maximum size of processes on 32-bit machines islimited to about 1.8 GB

5

2.4 Using LLT

This program performs a log-likelihood transformation on asemantic spaces. In keeping with
the arguments of the other programs, the name of the vector file is also specified by the context
spec and path value functions, which again allows for concurrent processing.

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–spec <file> : Name of file with context specification (default: all). The standard DEPEN-
DENCYVECTORSdistribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt.Theprefixcontextspec
is added automatically.

–targetdir <file> : Data directory, used for reading input files and writing output files (see
Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard
DEPENDENCYVECTORSdistribution (default: all)

Example call forLLT to convert spaces for all context specifications:

bin/LLT.sh --targetdir data/bnc/ --plain

2.5 Example

The directorysample contains a “minimal” running example for creating a semantic space: a
two-sentence corpus in “full” format (sample_corpus_full) and triple format
(sample_corpus_triples) as well as a set of two target words (targets). Executing the
scriptcreate_space.shwill run the complete pipeline and create a space in the subdirectory
vectors.

2.6 Details on String Handling

MINIPAR shows a somewhat unusual behaviour for parsers in that multi-word expressions can
occur as single nodes; these nodes are labelled with stringsincluding spaces. To correctly han-
dle these cases, spaces (and a small number of other special characters) are replaced during
processing. The replacements are given in Table 2. In addition, all words are lowercased, to
generalise over the capitalisation of first words in sentenes. The replacements are defined (and
can be altered) in the classMiniparEncoding. For technical reasons, it is not recommended
that targets or basis elements contain spaces.

This replacement takes place both for corpora, and for the lists of basis elements and tar-
get words read from files. As consequence, target word lists written by DEPENDENCYVEC-
TORSinto the target data directory can differ from the original target word lists in terms of target
normalisation. For example,mull over will be replaced bymull_over.

6

old new
: _COLON_
\t _TAB_
" (double quote) (empty string)
\s (space) _ (underscore)
‘ _BACKTICK_

Table 2: String Replacements in Corpus, Target, and BE expressions

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No comments allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), the target or basis element, and (2), its fre-
quency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of a Double.

3.4 Vectors file

The first line contains a tab-separated list of all basis elements. All following lines contain first
the target that is represented by that line, then a colon, andthen the vector as a space-separated
list of Doubles.

3.5 Context specification file

The context specifications are stored in external files. Lines that begin with# are treated as
comments and ignored, as are empty lines. Lines that specifypath templates contain one or
more edge templates, which are separated by=. Each edge template is a five-tuple, separated by
colons (:). The first and second tokens specify the lemma and part of speech of the source node.
The third token is the dependency relation label of the edge.The fourth and fifth tokens are the
part of speech and lemma of the target node. For every of thesetokens, users can specify the
asterisk (*), which will match everything. For examples, see the provided context specification
files.

7

4 Modifications and extensions

If you implement any modifications or extensions to the DEPENDENCYVECTORSpackage, I
would be very interested in hearing from you and merging the new code into the main develop-
ment branch. If you have any trouble in understanding what’sgoing on, let me know.

Almost all modifications and extensions should be possible by modifying exactly one place
in the code, since all frontends (ExtractBasisElements,ExtractSpace, andLLT) use
the same backend libraries.

4.1 Using another parser

This should (only) require extending or replacing theCorpus class, which can at the moment
only parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires overwriting (only) theParameters.basisMapping method. For example,
the following code extracts [word, grammatical relation] pairs as basis elements instead of
words:

static public String basisMapping(Path path) {
Edge lastEdge = (Edge) path.get(path.size()-1);
return lastEdge.getToNode().getWord()+"_"+lastEdge.getRelation();

}

4.3 Adding new context specifications

This requires putting the new context specification files (format see above) into the directory
lib/contextspecs and adding the name to theParameters.allCSFiles array. The
filenames of context specification files must start withcontextspec_.

4.4 Adding new path value functions

New path value functions can be added by extending theif valuation.equals(X)branch
in theParameters.pathValue method. The names of the new path value functions also
have to be recorded in theParameters.allValuations array. This makes them permis-
sible command line arguments, and they can be called with-X.

5 Bugs

It is entirely possible that there are still bugs in the system. If you encounter one, please let me
know, and I will try to fix it. (Note that fixing bugs is easier and faster the more detailed the error
report; it would be optimal if you could send me a “minimal example”).

8

Note that Vector Spaces computed with one parameter settingare not guaranteed to be inter-
pretable with different settings, so if weird errors occur,first make sure that you haven’t modified
the parameters between two runs.

6 Version history

• Version 1.0 (September 2002): First version.

• Version 1.1 (July 2003)

– New feature:LLT for log-likelihood transformation.

– New feature: Support for MINIPAR “full parses” format.

– Doc: First PS documentation.

• Version 2.0 (November 2004)

– Doc: Thorough documentation of code.

– Doc: Revised PS documentation.

– Implementation: Complete refactorisation of classes.

– Implementation: All programs usetargetdir now.

– Implementation: Introduction of packaging scheme andMakefile.

• Version 2.1 (May 2007)

– Doc: revised documentation

– Implementation: Administration of command line argumentscentralised

– FrequencyList andSemanticSpaceArray debugged.

– LLT debugged.

• Version 2.1a (July 2007)

– Minor debugging.

– Added usage sample.

• Version 2.2 (August 2007)

– More general recognition of the triples vs. full MINIPAR format

– More general handling of lemmas

• Version 2.3 (January 2008)

– Bugfixes (handling of antecedents; handling of default context specification)

• Version 2.3a (March 2008)

– More bugfixes (handling of brittle log transformation)

9

References

[1] S. Pado and M. Lapata: Constructing Semantic Space Models from Parsed Corpora. Pro-
ceedings of ACL, Sapporo, 2003.

[2] S. Pado and M. Lapata: Dependency-based semantic space models. Computational Linguis-
tics 33(2), 161-199. 2007.

10

