
Manual for DependencyVectors 2.4a

Sebastian Padó
Institut für Maschinelle Sprachverarbeitung

Stuttgart University
pado@ims.uni-stuttgart.de

This is a semi-technical document on how to use the DEPENDENCYVECTORS software package
to produce dependency-based vector spaces. The concept of dependency spaces and ideas as to
their applications can be found in [1] and [2]. The installation is described in the README file;
implementation details can be found in the javadoc documentation (see README).

Contents

1 Licence 2

2 Using DEPENDENCYVECTORS 2
2.1 By way of introduction: The sample directory 2
2.2 Architecture . 2
2.3 Using ExtractBasisElements . 4
2.4 Using ExtractSpace . 5
2.5 Using LLT/PMT . 6
2.6 Example . 6
2.7 Details on String Handling . 7

3 File formats 7
3.1 Targets file . 7
3.2 Target/BE frequency file . 7
3.3 Total path frequency file . 7
3.4 Vectors file . 7
3.5 Context specification file . 8

4 Modifications and extensions 8
4.1 Using another parser . 8
4.2 Using a different basis mapping function . 8
4.3 Adding new context specifications . 8
4.4 Adding new path value functions . 8

1

5 Troubleshooting 9
5.1 Logfile . 9
5.2 “Class def not found” when running one of the bin scripts 9
5.3 Memory trouble: “Invalid maximum heap size” or “Out of memory” 9
5.4 Further bugs . 9

6 Version history 9

1 Licence

Copyright c© 2003-2008 Sebastian Padó. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. You should have received a copy of the
GNU FDL in the file fdl.txt; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA or check http://www.gnu.org.

The DEPENDENCYVECTORS software package is released under the terms of the GNU Gen-
eral Public License. You should have received a copy of the GNU GPL in the file gpl.txt;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA or check http://www.gnu.org.

2 Using DEPENDENCYVECTORS

2.1 By way of introduction: The sample directory

The directory sample contains a “minimal” running example for creating a semantic space:
a two-sentence corpus in “full” format (sample_corpus_full) and triple format (sample_-
corpus_triples) as well as a set of two target words (targets). Executing either of the scripts
create_space.sh or create_space_triples.sh will run the complete pipeline and create
a space in the subdirectory vectors. These scripts can serve as templates for own calls of the
DEPENDENCYVECTORS pipeline.

2.2 Architecture

The DEPENDENCYVECTORS software package contains three programs, corresponding to three
steps of constructing a dependency-based semantic space model.

1. ExtractBasisElements: Choice of basis elements. Different from traditional word-
based semantic space models, which usually use the most frequent context words, DE-
PENDENCYVECTORS models can use any set of basis elements (BEs). These have to be
extracted (together with their frequencies) from the corpus in the first step. Additionally,
ExtractBasisElements extracts frequencies for the target words and the total number
of paths which are necessary for step 3.

2. ExtractSpace: Construction of semantic space. This constructs an actual DEPENDEN-
CYVECTORS semantic space model from a corpus, given targets and basis elements.

2

3. LLT: Log-likelihood transformation. This performs a log likelihood transformation on a
semantic space (optional).

It is recommended to call the three programs through the shell scripts in bin/. They communi-
cate through files; the flow of information can be seen in Figure 1. All files (boxes) in the middle
row are stored in the directory specified by the option targetdir and are named according to a
naming convention (see Table 1) that reflects the fact that the two main parameters of the extrac-
tion are the context specification and path value functions. All programs support the concurrent
processing of files with diffent parameters (see below).

2. ExtractSpace

Corpus
Targets

1. ExtractBasisElements

Basis
Elements

w/ frequencies
Targets

w/ frequencies Overall count Raw vectors

3.
Transformations

Transformed
vectors

Figure 1: Flow of Information in DEPENDENCYVECTORS

File Naming convenion
Target frequencies cs_pv.targets
BE frequencies cs_pv.bes
Total frequency cs_pv.total
Raw vectors cs_pv.vectors
Transformed vectors cs_pv.ll.vectors

Table 1: Naming convention for files in targetdir (cs is name of context specification, pv
name of path value function).

3

2.3 Using ExtractBasisElements

This program extracts basis elements. Since there may be (too) many, if a lexical basis mapping
(like the default) is used, ExtractBasisElements supports purging, i.e. the regular removal
of the most infrequent basis elements. This is implemented as follows: if the list contains more
than maxsize/ratio elements, the list is shortened to maxsize elements. This guarantees that
at every point, maxsize reliable basis elements are available.

–corpus <name> : Location of corpus (default: System.in)

–cutoff <int> : Ratio of basis elements to be deleted in each purge (default: 0.3)

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–maxsize <int> : Desired number of basis elements (default: 10000)

–spec <file> : Name of file with context specification (default: all). The standard DEPENDEN-
CYVECTORS distribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt. The prefix contextspec is added
automatically.

–targets <file> : File containing target words

–targetdir <file> : Data directory, used for writing output files (see Figure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard DE-
PENDENCYVECTORS distribution (default: all)

–basisMapping <bm> : Basis mapping function (no default). Currently available: lex (use
words as dimensions of the semantic space) and gramlex (use word-dependency relation
pairs as dimensions of the semantic space).

If either -spec or the path value function is omitted, the extraction is run for all available
values of that parameter, resulting in different file sets in the target directory.1 Example call for
ExtractBasisElements:

zcat bnc.parsetrees.gz | bin/ExtractBasisElements.sh
--targets targetsfile --targetdir data/bnc/
--plain --spec minimal.txt --lex

Note that after ExtractBasisElements is a good opportunity to sort out unwanted basis el-
ements according to frequency or any other criterion; see the definition of the frequency file
format below.

1The list of all context specifications is read from the variable Parameters.allCSFiles, and the list of all path
value functions from Parameters.allValuations.

4

2.4 Using ExtractSpace

This program extracts semantic spaces, given sets of targets and basis elements. It supports
incremental space building (to obtain learning curves) by using the -every option. The central
data structure is implemented in two different ways. The default implementation is faster, but
uses much memory. For the concurrent extraction of multiple spaces, I recommend using the
-small option which may be slower, but saves memory2.

–corpus <name> : Location of corpus (default: System.in)

–every <num> : Incrementally write semantic space every <num> corpus bytes to file
targetdir/cs_pv.vectors.<index>

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–small : Uses Semantic Space class with small memory footprint (recommended for concurrent
extracting of multiple spaces, but possibly slower)

–spec <file> : Name of file with context specification (default: all). The standard DEPENDEN-
CYVECTORS distribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt. The prefix contextspec is added
automatically.

–targetdir <file> : Data directory, used for reading input files and writing output files (see Fig-
ure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard DE-
PENDENCYVECTORS distribution (default: all)

–nofrequencies : Do not complain about missing frequencies in basis element and target files
(see below).

–basisMapping <bm> : Basis mapping function (no default). Currently available: lex (use
words as dimensions of the semantic space) and gramlex (use word-dependency relation
pairs as dimensions of the semantic space).

If either -spec or the path value function is omitted, the extraction is run for all available val-
ues of that parameter, resulting in different file sets in the target directory. Example call for
ExtractSpace:

zcat bnc.parsetrees.gz | bin/ExtractSpace.sh
--targetdir data/bnc/ --every 10000000
--plain --spec minimal.txt --lex

2Note that the maximum size of processes on 32-bit machines is limited to about 1.8 GB

5

Having individual target and basis element files for different parametrisations may seem unnec-
essary. However, recall that these files also contain frequencies (computed, for example, by
ExtractBasisElements). These typically vary between parameterisations and are necessary
for computing log likelihoods. Note that if you haven’t computed the basis elements for all
these parametrisations, the program will presumably fail while trying to open these files and
give you surprising error messages.

To enable the extraction of semantic spaces with “raw counts”, ExtractSpaces can run with-
out this frequency information, but this is disabled by default as a security measure. Specify
-nofrequencies if you want to enable this mode.

2.5 Using LLT/PMT

These program perform log-likelihood and pointwise mutual information transformations on a
semantic spaces. In keeping with the arguments of the other programs, the name of the vector file
is also specified by the context spec and path value functions, which again allows for concurrent
processing.

–help : Display help and exit.

–log <file> : Destination for the log file (default: log.txt)

–spec <file> : Name of file with context specification (default: all). The standard DEPENDEN-
CYVECTORS distribution comes with four specs:
contextspec_{minimal,medium,rich,wide}.txt.The prefix contextspec is added
automatically.

–targetdir <file> : Data directory, used for reading input files and writing output files (see Fig-
ure 1).

–plain | –length | –oblique | –oblength : Path value functions provided by the standard DE-
PENDENCYVECTORS distribution (default: all)

Example call for LLT to convert spaces for all context specifications:

bin/LLT.sh --targetdir data/bnc/ --plain

2.6 Example

The directory sample contains a “minimal” running example for creating a semantic space: a
two-sentence corpus in “full” format (sample_corpus_full) and triple format
(sample_corpus_triples) as well as a set of two target words (targets). Executing the
script create_space.sh will run the complete pipeline and create a space in the subdirectory
vectors.

6

old new
: _COLON_
\t _TAB_
" (double quote) (empty string)
\s (space) _ (underscore)
‘ _BACKTICK_

Table 2: String Replacements in Corpus, Target, and BE expressions

2.7 Details on String Handling

MINIPAR shows a somewhat unusual behaviour for parsers in that multi-word expressions can
occur as single nodes; these nodes are labelled with strings including spaces. To correctly handle
these cases, spaces (and a small number of other special characters) are replaced during process-
ing. The replacements are given in Table 2. In addition, all words are lowercased, to generalise
over the capitalisation of first words in sentenes. The replacements are defined (and can be al-
tered) in the class MiniparEncoding. For technical reasons, it is not recommended that targets
or basis elements contain spaces.

This replacement takes place both for corpora, and for the lists of basis elements and tar-
get words read from files. As consequence, target word lists written by DEPENDENCYVEC-
TORS into the target data directory can differ from the original target word lists in terms of target
normalisation. For example, mull over will be replaced by mull_over.

3 File formats

This section lists the formats of the various files.

3.1 Targets file

One word (target) per line, everything else ignored. No comments allowed.

3.2 Target/BE frequency file

Every line contains two tab-separated tokens: (1), the target or basis element, and (2), its fre-
quency. No comments allowed.

3.3 Total path frequency file

Just one line, containing the string representation of a Double.

3.4 Vectors file

The first line contains a tab-separated list of all basis elements. All following lines contain first
the target that is represented by that line, then a colon, and then the vector as a space-separated
list of Doubles.

7

3.5 Context specification file

The context specifications are stored in external files. Lines that begin with # are treated as
comments and ignored, as are empty lines. Lines that specify path templates contain one or
more edge templates, which are separated by =. Each edge template is a five-tuple, separated by
colons (:). The first and second tokens specify the lemma and part of speech of the source node.
The third token is the dependency relation label of the edge. The fourth and fifth tokens are the
part of speech and lemma of the target node. For every of these tokens, users can specify the
asterisk (*), which will match everything. For examples, see the provided context specification
files.

4 Modifications and extensions

If you implement any modifications or extensions to the DEPENDENCYVECTORS package, I
would be very interested in hearing from you and merging the new code into the main develop-
ment branch. If you have any trouble in understanding what’s going on, let me know.

Almost all modifications and extensions should be possible by modifying exactly one place in
the code, since all frontends (ExtractBasisElements, ExtractSpace, and LLT) use the same
backend libraries.

4.1 Using another parser

This should (only) require extending or replacing the Corpus class, which can at the moment
only parse MINIPAR-analysed corpora.

4.2 Using a different basis mapping function

This requires two changes. First, a new class must be written that implements the BasisMapping
interface. See the top of Parameters.java for the two built-in basis mapping functions as
examples. Second, a new case must be added to the (if (mapping.equals(...)) conditional
in the Parameters() constructor.

4.3 Adding new context specifications

This requires putting the new context specification files (format see above) into the directory
lib/contextspecs and adding the name to the Parameters.allCSFiles array. The filenames
of context specification files must start with contextspec_.

4.4 Adding new path value functions

New path value functions can be added by extending the if valuation.equals(X) branch in
the Parameters.pathValue method. The names of the new path value functions also have to
be recorded in the Parameters.allValuations array. This makes them permissible command
line arguments, and they can be called with -X.

8

5 Troubleshooting

5.1 Logfile

Each module records all important events, such as errors, in a file called log.txt in the targetdir.
If the output does not look as expected, this file might be worth a look. Note, however, that this
file is overwritten if subsequent modules are run one after another (e.g., first ExtractBasisElements
and then ExtractSpace).

5.2 “Class def not found” when running one of the bin scripts

You need to run the makefile first (make).

5.3 Memory trouble: “Invalid maximum heap size” or “Out of memory”

Java requires that the heap size is specified when the VM is started. This means that I needed to
fix the heap size to some constant; I picked 1 GB for all classes that are called from the command
line. Depending on your circumstances, this may be too little or too much.

• If you have a machine with 1 GB memory or less, you will likely see a “could not allocate
memory” error.

• On the other hand, if you try to compute a huge space, you will likely see an “out of mem-
ory” error when DEPENDENCYVECTORS attempts to allocate space for its data structures.

You can change the heap size with the compiler switch -Xmx<size>. The easiest way to do that
is to change the java -Xmx1G statement in the bash scripts in bin, e.g. to java -Xmx500m (less
memory) or to java -Xmx5G (more memory). A final complication is that programs of such
sizes run into the limitations of 32-bit memory addressing. 32-bit Java can usually deal with
heap spaces up to around 1.6GB, but not more. Thus, if you need to compute larger spaces, you
will either need to split the target words into multiple batches, find a 64-bit machine with 64-bit
Java to use, or implement more memory- efficient data structures (please let me know if you do
that ;-)).

5.4 Further bugs

It is entirely possible that there are still bugs in the system. If you encounter one, please let me
know, and I will try to fix it. (Note that fixing bugs is easier and faster the more detailed the error
report; it would be optimal if you could send me a “minimal example”).

Note that Vector Spaces computed with one parameter setting are not guaranteed to be inter-
pretable with different settings, so if weird errors occur, first make sure that you haven’t modified
the parameters between two runs.

6 Version history

• Version 1.0 (September 2002): First version.

9

• Version 1.1 (July 2003)

– New feature: LLT for log-likelihood transformation.
– New feature: Support for MINIPAR “full parses” format.
– Doc: First PS documentation.

• Version 2.0 (November 2004)

– Doc: Thorough documentation of code.
– Doc: Revised PS documentation.
– Implementation: Complete refactorisation of classes.
– Implementation: All programs use targetdir now.
– Implementation: Introduction of packaging scheme and Makefile.

• Version 2.1 (May 2007)

– Doc: revised documentation
– Implementation: Administration of command line arguments centralised
– FrequencyList and SemanticSpaceArray debugged.
– LLT debugged.

• Version 2.1a (July 2007)

– Minor debugging.
– Added usage sample.

• Version 2.2 (August 2007)

– More general recognition of the triples vs. full MINIPAR format
– More general handling of lemmas

• Version 2.3 (January 2008)

– Bugfixes (handling of antecedents; handling of default context specification)

• Version 2.3a (March 2008)

– More bugfixes (handling of brittle log transformation)

• Version 2.4 (July 2008)

– Two bugfixes in triple format reader (thanks to Bram Vandekerckhove)
– Principled handling of multiple edges in triple format
– Move to Java 5
– Modular specification of basis mapping function

• Version 2.4a (December 2009)

– Refactorization of the Corpus code to improve extensibility
– Refactorization of the package structure

10

