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Introduction

Probabilistic context-free models...

. ... assign probabilities to structural analyses of the input; Claim: most probable = preferred
= ... account for frequency effects (e.g., Jurafsky 1996)
= ... account for robustness of sentence processing (when using a wide-coverage grammar, e.g.

Crocker & Brants 2000)
However, they have no notion of semantic processing!
= Thematic fit of verbs and prospective arguments influences initial parsing decisions in many
constructions (e.g. NP/S)
= PCFGs can be lexicalised, but
= This treats a semantic phenomenon on a collocational level
= In practice, training data is very sparse

We propose a probabilistic wide-coverage modelling architecture that uses syntactic and
semantic cues

O Cleanly extend existing models by a crucial and separate dimension
= Achieve broad coverage of corpus and experimental data

Architecture

Standard: A probabilistic parser returns the most likely syntactic analyses at each word
= Syntactic probabilities are computed using a treebank grammar (induced from corpus)
= Wide coverage on unseen text
Extension: Probabilistically assign thematic roles to each verb argument in the partial parse
= Plausibility of set of thematic roles is modelled by its probability
= Probability of individual role assignment is estimated from semantically annotated corpus
= Extract prospective argument heads from the partial parse
= Assign each verb-argument pair its most likely role (including adjunct roles)

The overall preferred analysis is determined by both constraints
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The model initially only considers those parses in which a new role can be assigned (cf.
Pritchett (1992); if none of these parses is likely, it considers the remaining parses
= We predict disruption if the plausibility of the previously preferred analysis drops below that of
another analysis or below threshold
= Future work: Predict (graded) effects quantitatively

Result: A probabilistic, incremental, wide-coverage model of sentence processing that
accounts for semantic effects

A Test Case

NP/S ambiguity: The NP may belong to the verb as a direct object or to an embedded clause

‘Thealhlele ” realized | her shoes ‘ ... were out of reach ‘
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Readers prefer the direct object reading regardless of subcat preference (Pickering et al. 2000)
= Unless contradicted by thematic fit or (later on) syntactic admissibility
Probabilistic models make an incorrect prediction
= Verb subcat preferences lead to an early, unchanged preference for the embedded clause reading
Our model will make the correct prediction

= Eagerness for role-assignment leads to initial preference for the object reading; preference is
modified through thematic fit of arguments and syntactic probability

Testing the Semantic Module

Task: Model human judgment data with thematic role predictions

= Correlate judgments and model predictions
Approach: Estimate P(role, verb;,,.., arg-head) from corpus

= Compute as P(verby,,.)P(role|verby,,.)P(arg-head|verby,,nm, role)
Problem: Semantically annotated corpora needed (PropBank/FrameNet);

large sparse data problem
Solution: Class-based smoothing (Instead of counting token frequencies, count class
frequencies)

= Also model influence of infrequent words

= Verbs: Induce classes by clustering

= Nouns: Too sparse for clustering, use WordNet
Training and test data:

= Cluster and estimate probabilities from PropBank / FrameNet

= Test on 100 verb-argument-role triples with judgments on 1-7 scale from McRae et al. (1998)
Results:

Smoothing Scheme Coverage Correlation (pg)
None 2 (2%) ns
Clusters, FN 17 (17%)

Clusters, FN _
+WN noun synsets 18 (18%) p=0.634, p<0.01

Conclusions:
= Semantic module reliably predicts human judgments
= Smoothing enlarges coverage, strengthens correlation

= Training data is still sparse. Current work: automatically annotate larger data set (parts of BNC) with
role information to extend training set
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