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Abstract

Experimental research shows that human sentence processing uses infor-
mation from different levels of linguistic analysis, for example lexical and
syntactic preferences as well as semantic plausibility. Existing computa-
tional models of human sentence processing, however, have focused primar-
ily on lexico-syntactic factors. Those models that do account for semantic
plausibility effects lack a general model of human plausibility intuitions at
the sentence level. Within a probabilistic framework, we propose a wide-
coverage model that both assigns thematic roles to verb-argument pairs and
determines a preferred interpretation by evaluating the plausibility of the
resulting (verb, role, argument) triples. The model is trained on a corpus
of role-annotated language data. We also present a transparent integra-
tion of the semantic model with an incremental probabilistic parser. We
demonstrate that both the semantic plausibility model and the combined
syntax/semantics model predict judgment and reading time data from the
experimental literature.

1. Introduction

Human language processing draws upon a range of information sources, as demon-
strated by experimental results which reveal the rapid influence of lexical, structural, and
semantic factors on ambiguity resolution (e.g., Trueswell, Tanenhaus, & Kello, 1993; Stowe,
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1989; Taraban & McClelland, 1988; MacDonald, 1994; Garnsey, Pearlmutter, Myers, & Lo-
tocky, 1997). The sentence processing mechanism is capable of seamlessly integrating these
diverse information sources, while remaining extremely fast, accurate and robust towards
incorrect and noisy input.

Implemented computational models offer an opportunity to investigate the mecha-
nisms underlying the processor’s ability to integrate information from a variety of sources.
Such models demand the precise specification of the hypotheses they implement and they
can generate testable predictions. However, most existing sentence processing models have
focused on lexico-syntactic factors only. Even models that do account for effects of semantic
plausibility lack a general prediction mechanism for human plausibility intuitions on the
sentence level. Furthermore, the human parser’s wide coverage, i.e., its ability to handle a
wide range of linguistic phenomena, and to cope with previously unseen material, remains
a challenge for many models that are designed to cover only a small number of specific
phenomena.

In this paper, we propose the SynSem-Integration model, which combines an incremen-
tal probabilistic parsing model with a new computational account of semantic plausibility.
Semantic plausibility is a complex and multifaceted notion, which our model approximates
as the thematic fit between a verb and its arguments, given the sense of the verb. The
model implements a probabilistic notion of thematic fit and learns the relevant information
from corpus data. The SynSem-Integration model is wide coverage, i.e., it is able to process
material it has not encountered in the training corpus, and it is general enough to handle
arbitrary linguistic phenomena, at least in principle.

The spectrum of existing computational models proposed to account for human sen-
tence processing is large. There are models based on a small set of fixed parsing rules
or principles (e.g., Frazier, 1978; Abney, 1989; Crocker, 1996), models focusing on memory
constraints and other cognitive constraints (e.g., Gibson, 1991; Lewis & Vasishth, 2005), con-
nectionist models (e.g., Rohde, 2002; Mayberry, 2003) and hybrid symbolic/connectionist
accounts (e.g., Stevenson, 1994; Vosse & Kempen, 2000).

However, all of these models only provide restricted accounts of a property of the
human sentence processor that is key to explaining its robustness and wide coverage (e.g.,
Jurafsky, 2003; Crocker, 2005; Chater & Manning, 2006), viz., the pervasiveness of frequency
effects on different levels of processing. There is evidence for the effect of lexical category
frequencies (e.g., Trueswell, 1996; Crocker & Corley, 2002), verb subcategorization frame
frequencies (e.g., Trueswell et al., 1993; Garnsey et al., 1997), and structural frequencies (e.g.,
Cuetos, Mitchell, & Corley, 1996). Fully connectionist or hybrid connectionist/symbolic
models such as the ones referenced above could in principle account for such frequency
effects, and display considerable robustness to noisy input. However, these models require
large amounts of training data, and many training iterations, which makes it difficult to
scale them up to a realistically wide coverage of linguistic phenomena.

This problem is addressed by two classes of computational models that are explicitly
probabilistic and use structural frequencies estimated from corpora: probabilistic grammar-
based models and constraint-based models. Probabilistic grammar-based models have evolved
from Jurafsky’s (1996) proposal and subsequent work by Crocker and Brants (2000). This
approach uses a probabilistic context-free grammar to encode information about lexical and
structural preferences. The model incrementally assigns each analysis a probability on the
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basis of the grammar rules applied, where rule probabilities are estimated from a training
corpus. The human parser is assumed to entertain all possible analyses whose probability
exceeds a certain threshold. Processing difficulty arises when an analysis that was previously
dispreferred turns out to be correct based on subsequent input. Probabilistic grammar-based
models thus account both for the generation of alternative analyses in case of an ambiguity
and for processing difficulty that can arise from resolving such ambiguities. Their robustness
and wide coverage stems from the fact that they use large, probabilistic grammars induced
from a treebank, a syntactically annotated training corpus.

A variant of this type of approach is the surprisal model proposed by Hale (2001)
(see also Levy, 2008). This model predicts processing difficulty by monitoring incremental
changes in the probability distribution over all possible analyses of the input. It predicts
increased processing load at the point where analyses with a large probability mass are
disconfirmed (which indicates the integration of a word with high surprisal or information
value). Surprisal-based models assume a wide-coverage grammar, which allows them to
account for the human sentence processing system’s robustness. They are also capable
of predicting processing difficulty for non-ambiguous phenomena such as relative clause
embedding. However, since they do not aim at directly predicting parsing preferences and
ambiguity resolution processes, we will focus on the first type of probabilistic grammar-based
models here.

A common shortcoming of all probabilistic-grammar based models is that they do
not naturally integrate factors beyond the lexico-syntactic information encoded in a prob-
abilistic context-free grammar. Specifically, they cannot account for semantic plausibility,
as they have at best a syntactic representation of the relationship between a verb and its
argument, and would require vast amounts of training data to reach sufficient coverage of
such information to reliably predict plausibility effects.

The second class of explicitly probabilistic models includes constraint integration mod-
els. Accounts like that of Spivey-Knowlton (1996) or Narayanan and Jurafsky (2002) explic-
itly focus on the integration of a wide range of probabilistic constraints on linguistic process-
ing. They select the preferred analysis from a pool of pre-specified possible structures for an
ambiguous input, using competition for activation (in the case of Spivey-Knowlton, 1996),
or Bayesian reasoning (in the case of Narayanan & Jurafsky, 2002). Difficulty is predicted
in the same way as for probabilistic grammar-based models by Narayanan and Jurafsky’s
(2002) approach, while competition-based models link processing difficulty to the time the
system takes to settle on a preferred analysis (Spivey-Knowlton, 1996); it converges quickly
if all constraints prefer the same analysis and slowly if there is conflicting evidence.

Constraint integration models are well suited to model the influence of semantic plau-
sibility, which they can achieve by simply introducing additional constraints. A disadvantage
of these models, however, is that they have no theoretically motivated way of determining
the values of such constraints; they are typically instantiated from semantic plausibility
judgments. Another disadvantage of constraint-integration models is that they require con-
straints to be specified by hand and separately for every phenomenon; it is therefore difficult
to achieve a wide coverage of phenomena, and to deal with unseen input. Furthermore, by
looking only at a small number of pre-specified alternatives, these models leave aside the
non-trivial question of how syntactic analyses are constructed in the first place. They also
assume an unrealistically low level of ambiguity: probabilistic grammar models demonstrate
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that even seemingly unambiguous sentences or sentence fragments can have hundreds or
thousands of analyses, while constraint-based models typically only deal with two or three
pre-selected alternatives for ambiguous fragments.

In our discussion of both types of explicitly probabilistic models, it has become clear
that one basic difficulty for computational models of sentence processing models lies in
accounting for human semantic plausibility intuitions. Existing models are forced to either
consider lexico-syntactic factors only, or to use costly-to-obtain human judgments to capture
the influence of plausibility on processing. While the latter solution allows the representation
of plausibility constraints, it does not actually model the factors that underlie them.

To address this problem, and the ensuing shortcomings of existing probabilistic mod-
els, this paper proposes:

e a probabilistic model of human plausibility intuitions that approximates plausibility
as the thematic fit between a verb and its arguments and is trained on verb-argument-role
triples extracted from semantic-role-annotated corpora;

e the SynSem-Integration model, an architecture that integrates the plausibility
model with a probabilistic grammar-based model to capture the construction of syntactic
structures and the resolution of ambiguities using lexical, syntactic and semantic informa-
tion, while being able to handle a wide range of linguistic phenomena, and to cope with
previously unseen material.

In the following, we will discuss these two proposals in turn. We first introduce and
evaluate the semantic plausibility model. We then go on to describe the architecture of the
SynSem-Integration model and evaluate its predictions against empirical findings.

2. A model of semantic plausibility

Our first contribution is a general model of human intuitions about the plausibility
of events. We represent aspects of events as a verb and argument in a specific relation,
breaking down an event like The pirate terrorizes the Seven Seas into pirate is the agent in
a terrorizing event and Seven Seas is the patient in a terrorizing event. We describe the se-
mantic relation between a verb and its argument by the thematic role which the verb assigns
to the argument. This representation follows both the neo-Davidsonian approach to event
description in semantics (e.g., Parsons, 1990; Carlson, 1984) and the status of thematic roles
in psycholinguistics as a pivotal link between syntactic and semantic processing, for exam-
ple as a type of low-cost, preliminary semantic analysis (Carlson & Tanenhaus, 1988). The
verb-argument-role representation of sentence semantics encodes basic information about
the events referred to in a sentence, while avoiding complex issues like quantifier scope and
verb tense and aspect.

In experimental psycholinguistics, plausibility is typically manipulated using thematic
fit, which can be achieved by varying the argument of a verb-argument-relation triple. Such
a plausibility manipulation on the thematic fit level was carried out for example in McRae,
Spivey-Knowlton, and Tanenhaus (1998). Their study investigated the influence of thematic
fit information on the processing of the main clause/reduced relative (MC/RR) ambiguity
in sentences like

(1) a. The pirate terrorized by his captors was freed quickly.
b. The victim terrorized by his captors was freed quickly.
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During incremental processing of sentences like (1-a), the prefix The pirate terrorized is
ambiguous between the more frequent main clause continuation (e.g., as The pirate terrorized
the Seven Seas) and a less frequent reduced relative continuation as shown in (1-a), where
terrorized heads a relative clause that modifies pirate. The subsequent by-phrase provides
strong evidence towards the reduced relative reading and the main verb region was freed
completely disambiguates.

Evidence from experimental work shows that readers initially prefer the main clause
interpretation over the reduced relative, but that this preference can be modulated by other
factors (e.g., Rayner, Carlson, & Frazier, 1983; Trueswell, 1996; Crain & Steedman, 1985).
McRae et al. showed that good thematic fit of the first NP as an object of the verb in
the case of victim in (1-b) allowed readers to partially overcome the main clause preference
and more easily adopt the dispreferred reduced relative interpretation, which makes the first
NP the object of the verb (as opposed to the main clause reading, where it is a subject).
Reading time effects both on the ambiguous verb and in the disambiguating region suggest
that the thematic fit of the first NP and the verb rapidly influences the human sentence
processor’s preference for the two candidate structures.

To account for the thematic fit information in items like sentences (1-a) and (1-b)
above, a model has to solve two tasks: It has to identify the semantic relation that holds
between pairs of verb and argument like terrorize-pirate. These pairs can be extracted
from a syntactic analysis of the input fragment The pirate terrorized ... Given the pair
terrorize-pirate (and the corresponding grammatical function), a model should predict, for
example, the agent role, and not the experiencer or the means roles.! However, identifying
the role intended by the speaker does not necessarily allow conclusions about the real-
world plausibility of the verb-argument-role triple (cf. the syntactically straightforward,
but semantically implausible assignments for The victim terrorized the pirate). The model
therefore also needs to predict the plausibility of the event described by the verb-argument-
role triple. In the case of terrorize-pirate-agent, this plausibility estimate should be high,
whereas it should be lower for terrorize-victim-agent.

The first task is similar to that of a semantic role labeling model in computational
linguistics. There has been considerable interest in this topic starting with work by Gildea
and Jurafsky (2002). Influential work by Surdeanu, Harabagiu, Williams, and Aarseth (2003)
and Xue and Palmer (2004) has established useful features and modeling procedures, and a
wide range of models has been proposed due to the adoption of semantic role labeling as a
shared task in the Senseval-IIT competition (Litkowski, 2004) and at the CoNLL-2004 and
2005 conferences (Carreras & Marquez, 2005). We propose our own model here, however,
because semantic role labeling models do not explicitly address the second modeling task,
the prediction of human plausibility ratings. We have explored the possibility of using a role
labeling model for plausibility prediction, but have found that it did not succeed because
the standard labeling features rely heavily on syntactic information to assign labels and lack
the semantic information that is crucial here (Pado, Crocker, & Keller, 2006). The model
we propose here is specifically designed to assign both roles and plausibility predictions.

In parallel to probabilistic parser models for syntax, we choose a probabilistic model
formulation based on frequency information for linguistic utterances. Instead of using cor-

'Roles are given as defined by FrameNet 1.2 for the Cause_to_experience frame.
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pora with purely syntactic annotation, as for syntax models, we rely on corpora that are
(additionally) annotated with thematic information, such as FrameNet (Baker, Fillmore,
& Lowe, 1998) or PropBank (Palmer, Gildea, & Kingsbury, 2005). FrameNet annotates a
subset of the British National Corpus with Frame Semantics (Fillmore, 1982). PropBank
adds a layer of thematic role annotation to the Wall Street Journal section of the Penn Tree-
bank (Marcus, Santorini, & Marcinkiewicz, 1994). We use the FrameNet (release 1.2) corpus
to derive the probabilistic model, since it has been shown to offer a better basis for modeling
plausibility data than PropBank (Padoé et al., 2006). The fundamental assumption of the
probabilistic approach is that the plausibility of real-world events can be modeled using the
frequency of the events’ descriptions in linguistic utterances. We discuss this issue further
in the General Discussion below.

The probabilistic formulation of the semantic model equates the plausibility of a verb-
argument-role triple with the probability of seeing the thematic role with the verb-argument
pair in a large corpus of annotated language data. This is parallel to the syntactic modeling
practice of equating the preferredness of a structure with the probability of encountering
it in an annotated corpus. The semantic model estimates the plausibility of a verb-role-
argument triple as the joint probability of five variables: These are the identity of the verb
v, argument a and thematic role r, the verb’s sense s and the grammatical function gf of the
argument. The verb’s sense is relevant because it determines the set of applicable thematic
roles, while the grammatical function linking verb and argument (e.g., syntactic subject or
syntactic object) carries information about the thematic role intended by the speaker. The
semantic model equation is given in Equation 1.

Plausibility,, ,. , = P(v,s, gf ,r,a) (1)

The joint probability formulation makes the model an instance of a generative model. This
type of model attempts to estimate the joint probability distribution that is most likely to
generate the observed co-occurrence of the input variables (here, the verb and argument as
well as the verb sense and grammatical function) and the output variable (the thematic role).
On the basis of the estimated distribution, generative models can predict the most likely
instantiation for missing input or output values. This property allows the model to naturally
solve its dual task of identifying the correct role that links a given verb and argument, and
making a plausibility prediction for the triple: It predicts the preferred thematic role for a
verb-argument pair by generating the most probable instantiation for the role, as shown in
Equation 2.

fv,a = argmax P(Ua S, gf) T, CL) (2)
r

If necessary, the verb sense and grammatical function can also be generated. The probability
assigned to the resulting combination of variable instantiations is the model’s plausibility
prediction for the verb-argument pair and chosen role. If all variables are known, the gen-
eration and maximization steps are unnecessary and the plausibility prediction is made
directly.

An equivalent, decomposed version of Equation 1 (derived using the chain rule) allows
a more intuitive understanding of the linguistically relevant information about the verb-
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argument pair used by the model.

Plausibility, ., = P(v,s,gf,r a) (3)
= P(v)-P(s|v) - P(gflv,s) - P(rlv,s,gf) - P(alv,s, gf ,7)

The decomposed formulation contains P(s|v), which denotes the sense distribution
of a polysemous verb. The P(gf|v,s) term captures information about the verb’s syntactic
subcategorization preferences when used in sense s: It reflects the probability of the verb’s co-
occurrence with dependents in any of the possible grammatical functions. The P(r|v, s, gf)
term shows how the verb prefers to realize its thematic role fillers syntactically. Finally,
the P(alv, s, gf,r) term is similar to the term estimated by selectional preference models in
cognitive science and computational linguistics (Resnik, 1996; Clark & Weir, 2002) which
determine a verb’s preference for certain argument types and estimate the fit of a verb and
argument in a given role.?

Given the above model of plausibility for individual arguments, we now define the
computation of the plausibility of a sentence or sentence-initial fragment with several argu-
ments. We determine the plausibility of a completed or incremental syntactic analysis by
multiplying the plausibility estimates for all verb-argument pairs it contains. This consti-
tutes an independence assumption that ignores the existing dependencies between thematic
roles assigned to different arguments of the same verb. It is however necessary because data
sparseness in the training data makes it impossible to model these dependencies explicitly.
We augment our approach to mitigate two problems:

e To approximate the dependencies betweens arguments of the same verb, we posit
the constraint that each role can be assigned only once by the same verb and determine the
optimal set of role predictions given this constraint. Equation 4 demonstrates the case of a
verb with two arguments, using the joint model formulation for the sake of brevity. The role
assignments by different verbs in the same sentence or fragment are treated as independent.

Plausibility, = P(v, s, gf1,71,a1) - P(v, s, gf2, 72, a2) (4)

where

(f1,72) = argmaz  P(v,s,gf1,r1,a1) - P(v, s, gf2,72, a2) (5)

{ri,ralri#r2}

This approach allows the assignment of semantically dispreferred roles where a more plau-
sible role filler is available for the same verb. Note that Equation 4 indicates that the
computation of plausibility requires the joint maximization of #; and 7. However, this is
a tractable problem, as the number of roles to consider is small and finite (and so is the
number of verb senses s and grammatical functions gf, should these be unknown). Hence a
complete search of the problem space is possible to perform the maximization.

e Computing the overall probability of multiple role assignments as the product of the
individual probabilities causes a preference for analyses with small sets of role assignments
per verb. This leads to unexpected semantic rankings when we compare the semantic plau-
sibilities of various syntactic analyses. We improve the predictions by using the geometric
mean over the role assignment probabilities for each role set (mitigating the influence of the

2Evaluation against selectional preference models on the plausibility prediction task shows that our model
outperforms the existing approaches (Padé, 2007).
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number of roles). We also weight the role sets by how well they correspond to the verbs’
preferred role assignment patterns in the training data (see Pado (2007) for details).

2.1. Model estimation

The semantic model can be estimated from any language corpus with semantic role
annotation. Two corpora with such markup are currently available: FrameNet (Fillmore,
Johnson, & Petruck, 2003) and PropBank (Palmer et al., 2005). PropBank is the larger
of the two, but our experiments indicate that the syntax-oriented quality of the PropBank
semantic annotation allows less semantic generalization than the FrameNet role labels and
is less suited to our task (Pado et al., 2006). We therefore estimate the semantic model from
the FrameNet corpus.

The FrameNet annotation project groups verbs with similar meanings together into
frames (i.e., descriptions of prototypical situations). Each frame introduces a set of frame-
specific roles for typical participants in these situations, for example an agent and an experi-
encer in the Cause_to_experience frame. Frames can also introduce non-core roles like time
or means that are the same across all frames and that generally apply to adjuncts. The an-
notated sentences are manually selected from the British National Corpus (BNC, Burnard,
1995), a corpus of English drawn from a variety of genres and containing written as well as
spoken data. The FrameNet resource (release 1.2) contains c¢. 57,000 verbal propositions and
c. 2,000 verbs. The resource aims to present instances of each verb with all its roles and in
all syntactic diatheses, which generally allows good coverage of roles, despite the relatively
small size of the corpus.

The sampling method however implies that the corpus is not a representative sample of
English. Therefore, when trained on the FrameNet corpus, our model relies on probability
estimates that are not necessarily representative of every day language use. Our model
is still able to make meaningful predictions because co-occurrence information for specific
verbs and arguments is usually very sparse even in larger corpora, so that any probabilistic
model essentially classifies seen and unseen events. This classification represents a very
high baseline in semantically influenced tasks (see, e.g., its successful use in early work
on prepositional phrase attachment by Hindle and Rooth (1993)). If a larger corpus with
FrameNet-style annotation were available, our model would gain more coverage of specific
verb-argument pairs and a finer-grained estimate of co-occurrence frequencies, both of which
we expect to improve its predictions. In the absence of such a resource, we rely on the
information available in the corpus and use smoothing techniques to generalize to unseen
cases.

2.1.1. Smoothing.

To estimate the semantic probability model, we can use maximum likelihood estima-
tion on word-co-occurrences in our training corpus. However, we encounter a serious sparse
data problem: For instance, if we use the data from McRae et al. (1998) as a test set (see
below), only 6% of all verb-argument-role triples are attested in the FrameNet corpus. For
the remaining 94% of data points, the model would predict a probability of 0. A model
induced by maximum likelihood estimation alone therefore underestimates the plausibility
of data points unseen in the training data.

We apply class-based smoothing (CB), a standard method used in computational
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linguistics to approach this problem. Class-based smoothing pools similar observations in
the training data to arrive at a more robust probability estimate for each class member. In
experience-based models of syntax (and probabilistic parsers in computational linguistics),
abstract categories like parts of speech are used as classes. We make semantic generalizations
instead by employing semantic verb and noun classes. The method therefore serves not only
to avoid the problems of sparse data, but also to base the model’s predictions on semantic
generalizations rather than pure word co-occurrence. From a cognitive perspective, semantic
categories are a much-researched basic tool for human reasoning about the world (see, e.g.,
Medin & Aguilar, 1999), and there is evidence for the existence of semantic classes as an
organizational principle of the huiman mental lexicon (see, e.g., Aitchison, 2003). Class-based
smoothing as inference about the plausibility of events based on semantic class membership
therefore appears to be a plausible modeling tool.

Technically, when applying class-based smoothing to the semantic model, we estimate
a joint probability distribution over semantic classes P(cly, gf, 7, cl,) instead of over indi-
vidual words P(v, s, gf ,r,a) and thereby base our estimate on a much larger set of relevant
data points. Given a semantic noun class that contains pirate and buccaneer and a semantic
verb class with terrorize and terrify, class-based smoothing allows us to count observations
of terrify-pirate-agent and terrorize-buccaneer-agent to estimate the plausibility of terrorize-
pirate-agent. This method is therefore especially well-suited to making reliable plausibility
predictions even for unseen verb-argument combinations.

In the semantic plausibility model, we use class-based smoothing for both nouns and
verbs. WordNet’s synonym sets serve as noun classes (Fellbaum, 1998). These very fine-
grained classes ensure valid generalizations and perform better than the coarse-grained set
of WordNet unique-beginner (top-level) classes (Pado, 2007). However, fine-grained noun
sets can contribute only relatively little smoothing power exactly because their generaliza-
tions are very specific. Most of the generalizations are in fact made by the verb classes,
which we induce from the FrameNet training data (Pado et al., 2006). Our induced verb
classes outperform hand-crafted classes such as VerbNet (Kipper, Dang, & Palmer, 2000) or
WordNet because they are optimized for the task and the training set (Pado, 2007).

Verbs are clustered according to which roles they assign to their arguments, and how
they realize them syntactically. We use an implementation of two soft clustering algorithms
(Marx, 2004) derived from Information Theory: the Information Distortion (ID) (Gedeon,
Parker, & Dimitrov, 2003) and Information Bottleneck (IB) (Tishby, Pereira, & Bialek,
1999) methods. Soft clustering allows us to identify and use verb polysemy, which is often
characterized by different patterns of syntactic behavior for each verb meaning. Features for
the clustering algorithms were the lemmas of the argument head of the verb, the syntactic
configuration of verb and argument (as a path through a parse tree), the verb’s sense (i.e.,
its FrameNet frame), the role assigned to each argument and a combined feature of role and
syntactic configuration.

To choose the optimal values for the parameters clustering algorithm and number of
clusters, we evaluated different parameter instantiations by comparing the quality of the
semantic model’s plausibility predictions when using the resulting clusters for smoothing.
Evaluation was done on a development data set with 60 human ratings for verb-argument-
role triples (a subset of the plausibility norming data from McRae et al., 1998, see below).
For the FrameNet data, the ID algorithm performed best, and a set of 13 clusters proved
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Table 1: Example Clusters: Top ten verbs from two induced clusters.
Cluster 1 Cluster 2

resent cycle
envy follow
dislike travel
like lead
hate chase
prove accompany
delight escort
want usher
argue pursue
regret trail

optimal. Note that this is much fewer than the c. 300 verbal frames specified in the
training data. Our verb classes thus constitute a compact, task-specific generalization of the
information available in FrameNet. For a more detailed discussion of the clustering process,
see Pado et al. (2006) and Pado (2007). Table 1 shows the top ten members of two of our
induced clusters, sorted by their probability of cluster membership (all probability values
> 0.84). Cluster 1, which also includes terrorize, has the common theme of experiencing
(like, dislike) or causing emotion (delight). Cluster 2 contains verbs of motion. Other cluster
topics include perception, modes of communication, or verbs of increase and change (e.g.,
increase, soar).

To broaden coverage in cases where CB smoothing does not return estimates, we
also employ Good-Turing (GT) smoothing (see, e.g., Good, 1953; Manning & Schiitze,
1999). This method re-estimates the model’s probability distribution and assigns a uniform,
small amount of probability mass to all events that are unseen in the training data (and
thus receive a zero probability prediction in the unsmoothed model). Re-estimation of the
training distribution also makes estimates for rare events (such as hapax legomena) more
robust.

2.1.2. The smoothed model.

We combine CB and GT smoothing using a back-off strategy. Equation 6 illustrates
our combination method using the decomposed model formulation. GT smoothing is always
applied to the first four model terms, which are the least sparse. Since in these four terms we
do not allow predictions for events that are unseen, to avoid overgeneration of inconsistent
verb-sense-role combinations, G'T smoothing of these terms mainly serves to smooth the
counts for events that only appear once in the training data, because these are prone to
noise.

Plau‘Sibilityv,r,a = PGT(U) ’ PGT(U|S) ’ PGT(gf|U’S) ’ PGT(T|Ua3’gf) ’
PBO(a|Ua3)gf’r) (6)

The final, sparsest model term Pgo(alv, s, gf,7) is estimated in a series of back-off steps (see
Katz, 1987), given in Equation 7. Here, cl,, denotes the class of a verb, and cl, denotes the
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Table 2: Test item: verb-argument-role triples with plausibility ratings from McRae et al. (1998);
scale ranges from 1 (implausible) to 7 (plausible).

Verb Argument Role Rating
terrorize pirate agent 6.5
terrorize pirate experiencer 2.2
terrorize victim agent 1.4
terrorize victim experiencer 6.6

class of an argument induced by the class-based smoothing algorithm.

Pep(clalcly, gf ,7) it fop(clas cly, gf ,7) >0
Pep(clglcly,T) if fop(cla,cly, gf,7) =0

and fep(clg, cly,r) >0
Par(cly|cly,r) else

(7)

PBO(a|Ua S, gf’r) =

First, we try to estimate P(a|v, s, gf,r) using class-based smoothing. Note that while the
verb’s sense s does not appear in the CB formula, the model generates the sense value that
maximizes the plausibility equation while being compatible with the predicted role. If a
combination of classes, grammatical function and role is unseen even after generalization,
we apply class-based smoothing again, but remove the grammatical function term. While
the grammatical function information may yield useful hints about the intended role if it
is present, it is not central to determining the plausibility of a verb-argument-role triple.
If class-based smoothing fails entirely, we back off to a GT estimate of seeing an unknown
combination of classes.

In cases where the model has to rely on GT smoothing only, there is an advantage to
using the decomposed formulation over the joint formulation. In the decomposed formula-
tion, the less sparse first four model terms contribute information about the verb’s preferred
syntactic and semantic realization of its arguments that is lost if the joint probability model
is smoothed with a uniform estimate for all unseen combinations of the five model variables.
We therefore use the decomposed model formulation below.

Note also that Equation 7 is simplified for ease of exposition. In order to ensure that
a probability distribution is returned by the back-off sequence, the back-off terms have to
be weighted appropriately: The total probability mass returned by each back-off step has
to be scaled to take up only the mass assigned to unseen events by the previous step (see,
e.g., Dagan, Pereira, & Lee, 1994, for a suitable scaling factor).

2.2. Experimental evaluation

The semantic model’s appropriateness for its task can be tested by using it in isolation
to predict human plausibility intuitions. We investigate the performance of the smoothing
methods and demonstrate the quality of the smoothed model’s predictions and its wide
coverage of unseen input data.

Four example test data points from McRae et al. (1998) are presented in Table 2. Each
triple of verb, argument and role is associated with an average human plausibility rating on
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a 1-7 scale. The ratings were collected by asking participants to answer questions like How
common is it for a pirate to terrorize someone? (probing the agent relation between pirate
and terrorize) with the rating that seemed appropriate. The experiencer relation between
pirate and terrorize was probed by asking How common is it for a pirate to be terrorized by
someone?

The model’s task is to predict the human rating given the verb, argument and role. We
correlate the plausibility values predicted by the model (probabilities ranging between 0 and
1) and the human judgments (average ratings ranging between 1 and 7). Since the judgment
data is not normally distributed, we use Spearman’s p (a non-parametric rank-order test);
p ranges between 0 and 1, where a value of 1 indicates a perfect correlation.

2.2.1. Training and test data.

We train the model on the FrameNet corpus, release 1.2, and present results from
two test sets. The first is a set of norming data from the literature. We use the data for
25 randomly chosen verbs (corresponding to 100 data points) out of the 160 data points
reported in McRae et al. (1998) (the remainder serves as a development set for parameter
optimization). Recall that in this data set, each verb is paired with two arguments and two
roles each so that each verb-argument pair is plausible in one role and implausible in the
other, as shown in Table 2. The balancing of plausible and implausible verb-argument-role
triples means that the semantic model can only correctly predict the judgments if it indeed
uses semantic plausibility information (rather than just relying on general syntactic role
preferences). The judgment prediction task is very hard to solve if the verb is unseen during
training, since its identity determines the set of applicable thematic roles.®> We therefore
exclude items with unseen verbs from the test data, retaining 64 of the original 100 data
points.

The second test set, from Pado et al. (2006), allows us to explore the semantic model’s
performance on items which were extracted from corpus data, namely the FrameNet and the
PropBank corpora. We chose 18 verbs that occur in both FrameNet and PropBank according
to the roles they assign in VerbNet: Six experiencer verbs like hear, six patient verbs like hit
and six communication verbs like tell. For each verb, we extracted six arguments from each
corpus: The three most frequent arguments in the preferred subject role and the three most
frequent arguments in the preferred object role. We constructed verb-role-argument triples
by combining each verb-argument pair with both roles, obtaining 24 verb-role-argument
triples per verb, and elicited ratings on a seven-point scale for each triple in a web-based
study. In all, there are 414 verb-role-argument triples instead of the full 24 x 18 = 432,
because some arguments were seen in both corpora. This approach weakens the balancing
seen in the McRae data, where each argument is highly plausible in one role and highly
implausible in the other, but there remains a clear tendency towards this behavior in the
data.

By definition, all the verbs in this test set are covered by FrameNet, and roughly one
quarter of the verb-argument-role triples are present in the FrameNet training data. This
allows the investigation of the model’s performance when the sparse data problem is less

3While it is conceivable to set up the model to induce the closest FrameNet frame for an unseen verb,
this is an ambitious research project that is complicated by the problem of having seen only one instance of
the unknown verb.
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Table 3: Semantic Model Performance: Test set size, coverage and correlation strength for McRae
and Pado test sets using different smoothing regimes.

McRae Pado
Smoothing N Coverage Spearman’s p* N  Coverage Spearman’s p?
None 64 6% -0.316, ns 414 27% 0.364, ***
GT 64 88% 0.032, ns 414 99% 0.170, ***

CB+GT 64  88% 0.415, ** 414  99%  0.522, **x

4ns: not significant, *x : p < 0.01, *x*x: p < 0.001

pressing and when the test vocabulary is more similar to the training data than when using
hand-crafted items.

2.2.2. Results and discussion.

Table 3 reports the semantic model’s coverage of the test set items and the correlation
between predicted and observed human judgments. We also present results for the GT
smoothing method and the unsmoothed model for comparison.

The unsmoothed results highlight the severity of the sparse data problem: For the 64-
data-point McRae data set, predictions can be made for only 6% of all data points, and the
correlation is negative and non-significant. The Pad6 data set was designed to contain more
seen data points. The predictions for the 414 Padé data points are significantly correlated
to the human judgments, demonstrating that a probabilistic corpus-based model is capable
of making accurate predictions for seen triples.

GT smoothing alone allows only poor predictions, especially for the almost completely
unseen McRae data set. While the decomposition of the model into separate, less sparse
subterms supplies some verb-specific preferences, the smoothing method does not make
argument-specific plausibility predictions. Therefore, it cannot capture the crucial thematic
fit variations in the data sets. However, coverage has increased significantly, of course. Some
items still remain uncovered due to a restriction which we have placed on the model to ensure
consistency of the role predictions: Only thematic roles that have been seen with the verb
during training may be predicted. This includes cases where the verb was observed in a
different sense from the one probed by the test data, so that the correct role cannot be
predicted given the training data. The correct role is unseen with the verb more often for
the McRae data set, which differs in genre from the training data more than the Pad6 data
set.

Adding the CB smoothing method to the GT smoothed model finally supplies argu-
ment specific smoothing information. In contrast to the first two results, the fully smoothed
semantic model achieves significant correlations with the human data with realistic cover-
age. For the McRae data set, this is owed almost completely to the semantic generalizations
made in CB smoothing, since virtually all data points are unseen and GT smoothing alone
did not succeed. For the Padé test set, the application of CB smoothing even increases the
correlation coefficient noticeably over that for the seen data points only, at almost perfect
coverage. To interpret the coefficients, human performance can serve as a point of compari-
son. A human rater’s judgments predict the average of the other raters’ judgments at about
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Figure 1. The architecture of the SynSem-Integration model.

p = 0.7 (Pado, 2007). While the model performs below this level, its performance is still
substantial in comparison.

These results suggest that our smoothing methods are appropriate and allow the model
good performance on a test set of almost completely unseen data points. Not surprisingly
for a probabilistic approach, the model performs best on a test set that is more similar to
the training data and contains some seen data points. This evaluation demonstrates that
the semantic model is capable of predicting human judgments for new data sets. This makes
it a key component of the SynSem-Integration Model, which we now go on to discuss.

3. The Syntax-Semantics Integration model

The model of semantic plausibility introduced above allows us to integrate seman-
tic information with an existing approach to modeling syntactic preferences. The resulting
SynSem-Integration model of human sentence processing reliably predicts sentence process-
ing difficulty observed in experimental studies and is capable of processing unrestricted input
data, thus displaying wide coverage of language data.

The SynSem-Integration model is derived from a probabilistic grammar-based model
in the tradition of Jurafsky (1996) and Crocker and Brants (2000) because this type of
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1. S — NPVP 10| 6. V — terrorized .8
2 NP — DTN 1.0 7 V — slept 2
3. VP — VNP 918 N — pirate .5
4 VP — 'V 1]19. N — sea .5
5. DT — the 1.0

Figure 2. Example of a PCFG fragment: Numbered N — ( rules annotated with rule probabilities.

model explains the creation of syntactic analyses as well as the resolution of ambiguities. As
mentioned above, grammar-based models cannot easily account for semantic effects directly,
as the information about word co-occurrence they can capture is at the syntactic level only
and extremely sparse. Therefore, we add a dedicated semantic model. The existence of
separate syntactic and semantic models should not be taken as a claim about cognitive
reality, but rather serves to improve the transparency of the combined model and to allow
the separate evaluation of each component.

Fig. 1 illustrates the architecture of the SynSem-Integration model: The syntax model
incrementally computes all possible analyses of the input. The semantic model’s task is to
evaluate the resulting structures with respect to the plausibility of the verb-argument pairs
they contain. Both models simultaneously rank the candidate structures: The syntax model
ranks them by parse probability, and the semantic model by the plausibility of the verb-
argument relations contained in the structures. The two rankings are interpolated into a
global ranking which allows the prediction of a humanly preferred structure, as in a grammar-
based model. Depending on the interpolation parameter for the global ranking, either source
of information can dominate the preferred structure prediction.

Difficulty is predicted with respect to the global ranking and the two local rankings,
by taking up elements of the difficulty prediction strategies in both probabilistic grammar-
based and constraint-integration models. As in a competition-based constraint-integration
model, difficulty is predicted if the information sources disagree in their support for the glob-
ally preferred structure. This means that even if one model dominates the global ranking,
the other model’s preferences are still vital for difficulty prediction. As in both Jurafsky-
style grammar-based models and constraint-based models, difficulty is also predicted if new
evidence leads to the abandoning of the globally preferred structure in favor of another one.

In the following, we first describe the implementation of the syntactic model. We then
go on to discuss the difficulty prediction strategies of our model and existing probabilistic
approaches. This leads us to describe the parameter space for cost prediction in the SynSem-
Integration model, and the setting of these parameters on a held-out set of observed patterns
of human processing difficulty. Finally, we present an evaluation of the SynSem-Integration
model against experimental data on four locally ambiguous constructions, from a total of
eight experimental studies.

3.1. The syntactic model

The SynSem-Integration model incorporates a probabilistic grammar-based model as
a source of information about lexical and syntactic preferences. As in Jurafsky’s (1996)
approach, the grammar-based model proposes analyses of the input based on a probabilistic
context-free grammar (PCFG). Fig. 2 gives an example of PCFG rules of the form N — (
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1. S — NP VP|terrorize] 8|6 Visleep] —  sleeps 0.5
2. S — NP VP|sleep] 2|7 Vi[sleep] —  slept 0.5
3. VPl[terrorize] —  V][terrorize] .2 | 8 V]terrorize] — terrorized 0.7
4. VPJ[terrorize] —  V][terrorize] NP .8 | 9. Vlterrorize] — terrorizes 0.3
5. VP|sleep] —  V]sleep] 1.0

Figure 3. Example of a partially lexicalized PCFG fragment: Numbered N — ( rules annotated
with rule probabilities.

(N rewrites as ¢) with rule probability P(N — (). This grammar covers sentences like The
pirate slept or The pirate terrorized the sea. The probability of a syntactic structure 7" for
an input sentence can be computed by multiplying the probabilities of the grammar rules
involved in constructing 7', as expressed in Equation 8:

Py = [ PIN-=¢ (8)

(N=Q€eT

The probability of analyzing The pirate slept as a sentence composed of a noun phrase and
a verb phrase that is a single verb is thus 0.01 (using rules 1, 2, 4, 5, 7 and 8).

Like Crocker and Brants (2000), we use a wide-coverage grammar induced from a large
corpus of syntactically annotated data. This grammar is able to account for all syntactic
phenomena encountered in the corpus and can thus make correct structural predictions also
for input that was not encountered during training. This allows our syntactic model wide
coverage of phenomena and the ability correctly process unseen input.

We use a lexicalized model that contains not only purely structural information, but
also preferences associated with single lexical items, such as lexical category preferences or
verb subcategorization preferences (Jelinek, Laerty, Magerman, & Roukos, 1994; Collins,
1996). As shown in Fig. 3, a lexicalized grammar not only contains information about the
internal structure of phrasal categories, but also about the lexical heads involved. This
information allows the grammar to capture structural preferences that are specific to given
lexical heads. The grammar fragment in Fig. 3 for example encodes verbal subcategorization
information: Rule 5 states that sleep is an intransitive verb, always forming a VP without
a noun phrase argument, while according to rule 6 terrorize is preferably transitive. In
contrast to the semantic model, the lexicalized grammar does not distinguish between verb
senses, since no sense information is annotated in the training corpus (if sense information
were given, it would be possible to distinguish, e.g., between the preferred argument patterns
of different verb senses).

Fig. 3 shows a head-lexicalized grammar with lexicalization for the head of each phrase.
It is possible to include further information about lexical heads observed together in some
syntactic relation, for example as a verb and its argument. Such a head-head lexicalized
grammar could use this co-occurrence information to differentiate between syntactic analyses
with different verb-argument configurations.

However, in practice, this approach demands larger amounts of syntactically annotated
training data than are available today. Results by Gildea (2001) and Bikel (2004) suggest
that the relevant head-head lexical information is so sparse that it is rarely available in the
parsing of unseen text using standard training corpora like the Penn Treebank (Marcus et
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Table 4: Bracketing recall and precision, F-score and coverage of a lexicalized and a fully head-head
lexicalized parser on WSJ Section 23.

Parser Recall Precision F Cov.
Head-Head Lexicalization 86.47 86.65 86.49 100%
Head Lexicalization 86.17 86.31 86.29 100%

al., 1994). This is especially true if the domain of the training data differs from that of the
test data, as is the case for a probabilistic grammar-based model trained on the standard
newspaper corpora and used to analyze experimental items. Therefore, we expect that
head-head lexicalization will not improve parsing performance on unseen test data much,
and also that a head-head lexicalized grammar-based model will not be able to distinguish
between possible syntactic analyses on the basis of the available head-head co-occurrence
information.

Evaluation We test the assumption that head-head lexicalization does not improve pars-
ing for our purposes by analyzing the parsing performance of a head- and a head-head
lexicalized grammar. We use the incremental top-down parser proposed by Roark (2001) as
a parsing engine. We derive the two lexicalized grammars from the standard training data
for syntactic parsers, sections 2 21 of the Wall Street Journal section of the Penn Treebank
(WSJ Marcus et al., 1994). We add the data from section 24, to gain as much lexically-
specific information as possible, and retain section 22 as a development set. Section 23
is the standard test set for probabilistic parsers. We slightly modify this training data to
distinguish between adverbial PPs and agent PPs in passive constructions by introducing a
new phrase label for agent PPs.

We present evaluation results both for the head lexicalized syntactic model and the
head-head lexicalized version. Table 4 summarizes the results obtained on the WSJ sec-
tion 23. We report the standard measures coverage and parsing F score, based on bracketing
precision and recall across the best parses. Precision measures how many of the proposed
syntactic nodes are correct, punishing predictions with incorrect nodes. Recall gives the
proportion of correctly proposed tree nodes over the number of nodes in the target tree,

punishing predictions with missing nodes. F score is the harmonic mean of precision and

__ 2-Precision- Recall
I‘GC&H, F= Precision+ Recall *

The results in Table 4 demonstrate first the wide coverage of both models, which are
capable of assigning structure to all sentences in the unseen test data. Further, both models’
structural predictions match the human annotations on the test data to a large degree,
which allows us to assume that the predictions are mostly reliable. Finally, we observe
that, as expected, both models perform very similarly. The additional information present
in the head-head lexicalized grammar does improve parsing decisions, but not by a great
margin, because for most structures, the relevant head-head co-occurrence information does
not exist. We will therefore use the simpler head lexicalization technique for the syntactic
model’s grammar.

The head lexicalized parser proposes a large number of analyses for each input, many
of which are very unlikely. To restrict the amount of analyses that have to be processed in the
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SynSem-Integration model, we follow Jurafsky (1996) in introducing a search beam which
contains only analyses within a certain probability range. * We base difficulty prediction
only on analyses with probabilities up to two orders of magnitude away from the best parse’s
probability. The introduction of a search beam avoids the need to assume full syntactic
parallelism in human sentence processing and takes into account the existence of memory
limitations.

3.2. Difficulty prediction

The SynSem-Integration model predicts processing difficulty on the basis of semantic
and syntactic preferences determined by the semantic plausibility model and the syntactic
parser model introduced above. This section discusses difficulty prediction in the SynSem-
Integration model in relation to the strategies used in other approaches. We base our
discussion on the observation that in isolated sentences with local syntactic ambiguities,
human processing difficulty may be observed in two regions: During the processing of an
ambiguous region, there may be conflicting evidence from different information sources, and
at the point of disambiguation towards one of the alternative analyses, a previously preferred
analysis may have to be abandoned in favor of a previously dispreferred one. We term these
situations Conflict and Revision.

Take again the Main Clause/Reduced Relative (MC/RR) ambiguity as an example.
We repeat Sentence (1-b) from above as Sentence (2):

(2) The victim terrorized by his captors was freed quickly.

Recall that the ambiguous region up to terrorized has two possible interpretations: A main
clause continuation, and the reduced relative continuation as in (2). In the main clause
analysis, the victim is the semantic subject of the terrorizing event, while in the reduced
relative analysis, it is the semantic object. During this ambiguous region, a Conflict situation
arises if there is conflicting evidence for which of the two analyses to prefer. In sentence (2),
the main clause analysis is syntactically more likely, being much more frequent. However,
semantically, the wvictim is much more likely to be the theme rather than the subject of
the terrorizing action. The conflicting syntactic and semantic preferences cause processing
difficulty.

The ambiguity continues until the prepositional phrase by his captors provides a strong
syntactic bias towards the reduced relative interpretation. Rewvision difficulty may be ob-
served if the processor initially preferred the main clause interpretation, but now abandons
it. The main verb cluster, was freed, disambiguates completely: Only the reduced relative
interpretation is syntactically plausible now. Even readers who held on to the main verb
interpretation until this point are forced to revise and may encounter difficulty.

A successful model of human sentence comprehension needs a means of predicting
difficulty in both Conflict and Revision situations. The SynSem-Integration model bases its
predictions on two cost functions specific to these situations. We discuss the cost functions
employed in existing models and compare them to the ones used in our model.

“The search beam limits the amount of analyses used in predicting difficulty; the parser’s internal repre-
sentations of partial parses are not affected.
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Conflict during the processing of an ambiguous region is handled naturally by
competition-based constraint-integration models, where difficulty is predicted by compe-
tition of strong opposing constraints which delay the identification of a preferred interpreta-
tion. Grammar-based models in the Jurafsky tradition, on the other hand, use a difficulty
prediction function that only reacts to a change in the proposed preferred syntactic struc-
ture. Since a Conflict situation does not necessarily lead to such a change (the most probable
syntactic analysis of the input may remain the same despite conflicting preferences), these
models do not account consistently for this source of processing difficulty.

In the SynSem-Integration model, difficulty due to Conflict is predicted if either the
syntactic or the semantic model does not agree with the globally preferred structure. This is
equivalent to a conflict between the preferences of the syntactic and semantic models, since
the globally preferred structure is based on an interpolation of both models’ rankings. In
the Conflict situation, the SynSem-Integration model thus relies on a similar mechanism as
competition-based models.

Revision occurs if a reader gives up a previously preferred analysis for a different one.
Probabilistic grammar-based models easily capture Revision situations as they predict pro-
cessing difficulty if the preferred syntactic structure changes. This cost function can be
seen as an abstraction of the process employed by competition-based constraint-integration
models, which predict processing difficulty in Revision situations due to the competition be-
tween the well-supported previously preferred analysis and the strong activation from new
evidence received by the other analysis. Both existing proposals for cost prediction thus
capture the complexity involved in abandoning one interpretation of the input in favor of
another.

The SynSem-Integration model uses a similar prediction function to that of a prob-
abilistic grammar-based model. A conflict-based account of the Revision situation, as in
constraint-based models, is not open to the SynSem-Integration model on technical grounds,
because it operates strictly on the set of possible syntactic analyses of the current input. If
syntactic disambiguation completely rules out the preferred analyses of the previous time
step, its semantic interpretation is no longer available to compete with the interpretation
of the confirmed alternative analysis. Therefore, the SynSem-Integration model detects
a Revision situation by tracking the preferred structure at each point in processing, like
probabilistic grammar-based models.

Together, the Conflict and Revision cost functions guarantee that the SynSem-
Integration model can make difficulty predictions during the whole course of ambiguity
processing. The total cost predicted by the model is the sum of all Conflict and Revision
cost incurred in a region (it is possible for both cost types to be incurred simultaneously,
if the globally preferred analysis has changed, but another analysis is semantically more
plausible).

Granularity of Predictions A further aspect of cost prediction that is worth comparing
is the granularity of predictions. Models have a choice between three levels of granular-
ity for difficulty predictions: We call predictions that are binary flags for the existence of
difficulty qualitative predictions, predictions that specify the relative size of processing diffi-
culty relative-quantitative predictions, and predictions that directly link a model’s output to
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reading times in milliseconds absolute-quantitative predictions. Absolute reading times are
known to depend also on factors like word length, word frequency and predictability (Just
& Carpenter, 1980; McDonald & Shillcock, 2003), which are not considered in any of the
models discussed here (see, e.g., Demberg and Keller (2008); Boston, Hale, Kliegl, Patil,
and Vasishth (2008) for models of absolute reading times for newspaper text).

The models introduced above fall into different classes on this scale. Probabilistic
grammar-based models using the cost function introduced by Crocker and Brants (2000)
make qualitative predictions by announcing the presence of difficulty if a change in preferred
structure takes place. This type of prediction is quite imprecise, since it does not give
an indication of the relative difficulty encountered in the region in comparison to other
regions. The settling time of competition-based constraint-integration models, on the other
hand, predicts relative processing difficulty and therefore constitutes a relative-quantitative
prediction.

The SynSem-Integration model’s per-condition predictions are also relative-
quantitative. Recall that we define the final cost prediction for the processing of an input
region as the average cost predicted over all stimuli. Cost predictions therefore depend not
only on the amount of difficulty predicted for individual stimuli and the granularity of those
predictions, but also on the number of stimuli for which difficulty is predicted. The model’s
predictions thus reflect the relative processing ease for a condition with many easy stimuli
in comparison to one with many difficult ones. The granularity of the model’s per-item
predictions depends on the cost function used. We will discuss cost functions of different
granularity in the next section. We will show that the most reliable per-condition predic-
tions are made by binary or coarse-grained relative-quantitative cost functions, which are
most resistant to noise.

3.8. Parameters of the model

Having discussed the component models and the cost prediction mechanism of the
SynSem-Integration model, we now conclude the description of the model by discussing the
setting of the cost prediction parameters. There are two types of parameters: The first
is the interpolation factor used to compute the global preference score. The other is the
implementation of the two cost functions that predict difficulty. We introduce both types
of parameters and then describe the parameter selection process, during which the SynSem-
Integration model’s performance on a development set is optimized.

3.8.1.  The interpolation factor. The interpolation factor f is used to compute the
global preference score for the candidate analyses a;. The global score of the analyses deter-
mines the globally preferred syntactic structure, which has to be known for cost prediction.
The interpolation factor f determines the respective influence of the syntactic and semantic
scores predicted by the two model components, as shown in Equation 9. Syn is the prob-
ability of the syntactic analysis assigned to interpretation ¢ by the parser and Sem is the
semantic plausibility score assigned by the semantic plausibility model.

Global score(a;) = f - Syn(a;) - (1 — f) Sem(a;) (9)

The interpolation factor f ranges between 0 and 1. The larger this factor, the more the
syntactic probability of an analysis dominates its global score (i.e., the more similar the
global ranking of analyses becomes like the ranking based on the syntax score).
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3.8.2. The cost functions.

The second type of model parameter is the exact formulation of the cost functions used
for difficulty prediction. Recall that the SynSem-Integration model employs a combination
of two cost functions tailored to the Conflict and Revision situations in human sentence
processing identified above. Since each of the cost functions applies to only one source
of difficulty, their output is simply added to predict overall difficulty for an incremental
processing step.

Conflict cost quantifies the processing difficulty incurred in situations where the input
yields conflicting evidence for which analysis to prefer, while Revision cost accounts for
the processing difficulty caused by abandoning a preferred interpretation of the input and
replacing it with another. Cost prediction in either of these situations can be instantiated by
cost functions with different granularity of prediction. We define three alternatives each for
computing Conflict and Revision cost and evaluate their appropriateness during parameter
setting. Recall that the granularity of the cost functions only affects the grain size of the
SynSem-Integration model’s per-item predictions, not that of its per-condition predictions
(see Section 3.2).

Conflict cost is predicted on the basis of the insight from competition-based models that
processing difficulty can be explained by a conflict between strong disagreeing constraints.
The conflict cost functions in the SynSem-Integration model therefore are sensitive to dif-
fering structural preferences in the two information sources. Take ranky, and rank e, to
denote the syntactic and semantic rank® of the globally preferred analysis gp. We define
three cost functions, presented here in the order of increasing fineness of granularity.

1 if rankgsyn(gp) # rank sem (gp)
0 else
Fixed Cost is a qualitative measure which predicts binary difficulty by assigning a cost of
1 if the rank of the globally preferred analysis differs in the syntactic and semantic models.
This is the simplest possible way of modeling a Conflict situation in the SynSem-Integration
model.

2. Rank Cost: costcopfiict = abs(rank syn(gp) — rank sem(gp))
Rank cost computes Conflict cost as the difference between the ranks assigned to the globally
preferred analysis by the two models. For this function, no cost is incurred if the globally
preferred analysis is ranked first in both models, and growing amounts of cost are assigned

1. Fized Cost: costconfiict =

the lower the globally preferred analysis is ranked in a disagreeing model. This cost function
is motivated by the intuition that more cost should be incurred in a Conflict situation if
the rankings of the syntactic and semantic model differ widely than if they differ by only
one rank position. Since it captures the strength of the disagreement between the models,

it allows relative-quantitative predictions.
syn l .
pastlhy it manksen (gp) > rank.n (gp)

3. Ratio Cost: cost conflict = 5::::((;;)) if rank syn(gp) > rank sem (gp)

0 else

®Note that analyses with identical scores are assumed to share a rank, so there can be two equally preferred
analyses. In these cases, as long as one of the equally preferred analyses corresponds to the globally preferred
one, no difficulty is predicted.
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Ratio cost, the most fine-grained relative-quantitative measure, considers the probability
ratio between the locally preferred (Ip) analysis put forward by the disagreeing model and
the value that this model assigns to the globally preferred (gp) analysis (the one that is
ranked highest in the overall ranking). This function is a more graded implementation of
Rank cost, such that a structure that is dispreferred in the disagreeing model by a small
margin incurs less cost than one that is much less likely than the highest-ranked analysis.
Predicted cost larger than zero is scaled by the logistic function ﬁ
0.5 and 1 to avoid an explosion of cost if the locally preferred analysis is much more likely
than the globally preferred analysis.

to values between

Revision cost We also identify three Revision cost functions that apply when the se-
mantic interpretation of the globally preferred analysis changes from the last processing
step. We take this to be the case when the set of verb-argument pairs in the current se-
mantic interpretation is not equal to or a monotonic extension of the set derived from the
preferred semantic analysis at the last time step.® Here, set(gp,) denotes the set of verb-
argument pairs associated with the globally preferred syntactic structure gp at time step t,
and psem (gp,) denotes the semantic plausibility of gp at t. Again, we present the three cost
functions in order of increasing fineness of granularity.

1 if set(gp;) 2 set(gpi_q)

0 else
Fixed cost as a qualitative cost function assigns a fixed penalty of 1 if the set of verb-

1. Fized Cost: cost epision =

argument pairs in the globally preferred parse at ¢ is not a monotonic extension of the
semantic representation of the globally preferred parse from the previous time step. This is
the cost function used in non-surprisal probabilistic grammar-based models since Crocker
and Brants (2000).

1 if set(gp;) 2 set(gp;—1)
2. If-Worse Cost: coStrevision = and psem (9p¢) < Psem(9Pi—1)

0 else
The If-Worse function is a qualitative modification of the Fixed cost function. It only assigns
a fixed Revision cost if the set of verb-argument pairs in the globally preferred structure
has changed and the semantic analysis of the globally preferred parse is less probable than
the preferred one at the last time step. The intuition behind this modification is that a
semantically equal or more acceptable interpretation should be adopted more readily than

one that is less satisfying to the comprehender than the previously preferred one.

penlOP) it set(gp,) 2 set(gp, )

3. Ratio Cost: cost revision = and psem(gpt) <psem(gpt_1)

0 else
The Ratio cost function is a relative-quantitative version of the If-Worse function. It assigns
the ratio of the semantic probabilities of the last preferred analysis and the current preferred
analysis, capturing the difference in semantic preferredness between the two instead of as-

®Note that we do not pay attention to the roles assigned to the verb-argument pairs, because role re-
assignment does not appear to incur cost as long as the syntactic structure remains the same (e.g., He loaded
the truckgoar, which is easily reanalyzed into He loaded the truckrpeme onto the boatgoar, upon encountering
onto the boat Pritchett, 1992).
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signing a fixed penalty. Cost is then scaled by the logistic function ﬁ, as for the Ratio
Conflict cost function, to avoid an explosion of cost if the current best analysis is much less

likely than the last preferred analysis.

3.3.3. Parameter setting.

The model parameters (interpolation factor f and cost functions) are chosen so that
the model predicts an experimentally observed pattern of human processing difficulty with
maximal accuracy. As a development set, we use a data set from the Garnsey et al. (1997)
reading time study, namely the reading times for equibiased verbs. This data set was chosen
because it shows statistically significant effects and yields a relatively large number of stimuli
for processing by the SynSem-Integration model, and because there was a sufficient number
of other data sets for the same phenomenon (the NP/S ambiguity, see Materials below)
available for testing.

The data set contains a total of four reading time measurements, taken during two
critical regions in two conditions. The SynSem-Integration model’s task is to process the
original experimental items and to predict the observed pattern of difficulty as closely as
possible from them. We use the results for the total-time measure, since the model’s predic-
tions do not extend to the level of early versus late effects. The total time measure sums all
fixations on the region in question and reflects the total time spent inspecting the region,
be it during early or later processing.

The experimental observations and the predictions of the SynSem-Integration model
are scaled to indicate the percentage of difficulty contributed by each region as proposed in
Narayanan and Jurafsky (2005). This is more appropriate than using unscaled predictions
and observations, since the model does not intend to directly predict reading times or reading
time differences, but the occurrence of relative difficulty due to processing mechanisms.
We scale separately for each condition by normalizing each region’s observed or predicted
difficulty by the total difficulty observed or predicted across all regions.

We evaluate a range of different parameter values according to the quality of pre-
dictions that they allow the SynSem-Integration model to make. Parameter settings that
cause the model’s predictions to exhibit a different pattern from the observed data are re-
jected, and settings that emulate the observed pattern as closely as possible are preferred.
We further differentiate between the parameter settings that lead to qualitative acceptable
predictions by the size of the correlation coefficient between predictions and observations
(although we do not report the significance level for the correlation, since only four data
points are available).

We evaluate ten values for the weighting parameter f (in 0.1 steps from 0 to 1) for
each of five combinations of Conflict and Revision cost functions (we do not combine the
Ratio cost functions with any of the others due to their vastly different granularity).

Results and Discussion Table 5 gives an overview over the parameter values that al-
low good qualitative predictions of the pattern of difficulty in the development data. The
Conflict and Revision cost functions introduced above are reported with the range of values
for the interpolation factor f that lead to qualitatively correct predictions. All reported
values of f lead to a correlation coefficient of Pearson’s r > 0.95 between the predicted and
observed data points. The Rank/If-Worse combination with f > 0.8 leads to especially good
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Table 5: Best-performing interpolation factors for different cost function combinations.

f Range ?
Conflict Cost Revision Cost 7> 0.95 r > 0.99
Fixed Fixed - -
Fixed If-Worse 0.7 1
Rank Fixed - -
Rank If-Worse 0.7 0.8 091
Ratio Ratio 0.9-1 -

2 1: syntax only, 0: semantics only, —: No correct predictions

predictions (Pearson’s r > 0.99). We make several observations:

e For all successful model parametrizations, predictions become more like the observed
development data the larger the interpolation factor is, that is, the more the syntax model
determines the global ranking. Recall that the semantic ranking is always used for Conflict
cost prediction, no matter what the global ranking is, so the resulting model is not equal to
using a syntax-only model. The observation that “extreme is better” may be at least in part
due to the fact that syntax and semantics are pitched against each other in the development
data, leaving the constraints either in perfect agreement or exactly at odds. However, the
range of f for which the non-probabilistic functions qualitatively predict the experimental
observations is relatively wide. This indicates that the model is quite robust as long as the
syntactic model has more weight in deciding the global ranking.

e The probability ratio approach, though appealing due to its fine grain size, does not
allow us to predict the correct distribution of difficulty as well and across as broad a range
of f values as the coarser-grained approaches. This is probably due to noise present in the
two probabilistic component models.

e Only models using the probabilistic or If-Worse Revision cost function make qual-
itatively correct predictions. These cost functions postulate Revision cost only if the new
globally preferred analysis is less plausible than the old one was.

In the evaluation of the SynSem-Integration model, we will primarily refer to the
predictions of the best-performing Rank/If-Worse combination of cost functions with f = 1.
To show that the model’s predictions are robust across a range of model parametrizations,
we will also report numerical evaluation results for the other two successful parametrization,
Fixed/If-Worse with f = 1 and Ratio/Ratio with f = 1. Choosing f = 1 from the range
of possible values seems justified for two reasons: First, model performance increases with
higher values of f, and second, this choice simplifies the model, as it reduces the global
ranking of analyses to the syntactic ranking, effectively eliminating one of the three separate
rankings required in the general case. Conflict can now be identified by directly comparing
the syntactic to the semantic ranking, and Revision by tracking the preferred analysis in the
syntactic ranking.

3.4. An example: the MC/RR ambiguity

We now present an example of the difficulty prediction process in the SynSem-
Integration model, presenting the actual system output for the input sentence The wvictim
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terrorized by his captors was freed quickly. Fig. 4 gives a schematic overview over the four
processing steps that we consider: The ambiguous verb, the beginning of the disambiguating
by-phrase, the completion of the by-phrase and the main verb.

In the figure, each row in a table represents one possible syntactic analysis, charac-
terized as the main clause (MC) or reduced relative (RR) interpretation. We also list the
syntactic model’s probability prediction (normalized over all analyses in the search beam)
and the resulting syntactic ranking. This is complemented by the semantic model’s ranking,
normalized probability prediction and the underlying role assignment. We show data from
the Rank/If-Worse, f = 1 model, so these two rankings are enough to determine Conflict
and Revision cost at our chosen parameter settings. For the sake of brevity, we only list the
relevant parses. The syntactic parser proposes several additional analyses, most of which
differ on the level of part-of-speech labels (e.g., singular noun versus plural noun). Where
there are real syntactic alternatives beyond the MC and RR interpretations, we mention
them explicitly below.

At the first processing step, the ambiguous region, the main clause analysis is clearly
syntactically preferred - its normalized probability is almost 0.9. However, this analysis
implies that the victim is the semantic agent of the terrorizing event, which is highly unlikely.
The semantic model markedly prefers to rank the main clause and reduced relative analyses
in the opposite order for this item. The conflict between the syntactic and semantic ranking
causes a prediction of processing difficulty in this region.

At the preposition by, the semantic ranking remains the same (victim is preferred to be
the experiencer in syntactic object position), but the syntactic ranking changes. A reduced
relative construction with an agent PP is now more likely than the main clause reading,
where the PP has to be interpreted as an adverbial. In addition to these two analyses,
the syntactic model also proposes a reduced relative analysis (not shown in the figure) that
interprets the PP as an adverbial, as in The victimgy,; terrorized (PP-Adv by the seaside) was
freed quickly. The change in preferred analysis from the main clause to the reduced relative
interpretation prompts no Revision cost in the If-Worse cost function presented here, because
the newly-preferred analysis is semantically more likely than the abandoned one. If we were
using the Fixed Revision cost function, difficulty would be predicted. Note that a prediction
of “no difficulty” on the item level does not mean that the region as a whole is predicted to
show no processing difficulty, since the predictions over individual items are averaged for the
region prediction, and noise in items and model will cause a non-zero difficulty prediction
on average.

At the next time step, an explicit agent of the terrorizing event is processed. This does
not affect the syntactic or semantic ranking in comparison to the previous time step: Both
models continue to prefer the reduced relative interpretation. The main clause analysis is
unlikely both syntactically and semantically: The semantic model’s interpretations assumes
that the captors are the means by which the victim carries out the terrorizing event, which
does not serve to increase the likelihood of victim as an agent. As for the previous time step,
we do not show the reduced relative analysis that interprets the PP as an adverbial. Since
both models agree in their ranking and no change in preferred analysis has taken place, no
cost is predicted for this region.

Finally, on the main verb, only the reduced relative interpretation remains syntac-
tically viable. The syntactic parser proposes to interpret freed either as a verb or as an
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MC: The victimg,y; terrorized 0.898 1. | 2. 0.001 terrorize-victim-agent
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Syntactic Model Semantic Model
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Figure 4. Processing an experimental item: Analyses, predicted normalized probabilities and rankings by the syntactic and semantic models.
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adjective, resulting in two syntactic analyses with different main verbs, namely freed and
was. Neither main verb is present in the semantic model’s training data (cf. the role pre-
diction of unknown), so the analyses are equally likely semantically and tied for first rank.
In this case, no Conflict or Revision cost is predicted.

3.5. Ewvaluation of the SynSem-Integration model

We now turn to evaluating the SynSem-Integration model. We present the model’s pre-
dictions of processing difficulty for four ambiguity phenomena: The Main Clause/Reduced
Relative (MC/RR) ambiguity, NP object/Sentential Complement (NP/S) ambiguity, NP
object/Clause Boundary (NP/0) ambiguity and PP-Attachment ambiguity. For each phe-
nomenon, the model’s predictions for two experimental reading-time studies are computed
based on the original materials used in the studies. We present a qualitative evaluation
for one study on each of the four phenomena to illustrate the SynSem-Integration model’s
predictions.

As a further step to evaluate the SynSem-Integration model as objectively as possi-
ble, we correlate its predictions with the processing difficulty observed in all eight studies
(computed as the reading time difference between ambiguous and control conditions). This
tests how the model performs over a range of studies, and assesses the relative difference
predicted between all the observations.

3.5.1. Method.

As for parameter setting, we compare the SynSem-Integration model’s predictions to
the results reported for self-paced reading times or, in eye-tracking studies, for the total-time
measure, which collects all fixations on the region in question and thereby reflects all effects
of reading and re-reading visible in fixation durations. We use the results for the total-time
measure since the model’s predictions do not extend to the level of early versus late effects.

We create predictions for all critical regions (up to and including the disambiguation
region) measured in the experimental data used for evaluation. The SynSem-Integration
model’s difficulty prediction for a region is the sum of the Conflict and Revision cost predicted
in this region for all items, normalized by the number of items processed. We use the
best-performing parameters determined on the development set, namely the Rank/If-Worse
combination of cost functions and f = 1.

We base our predictions on all the items from any one study that can be processed
by the SynSem-Integration model. This excludes items that cannot be parsed correctly. A
correctly parsed item is one where the preferred analysis at each point in processing is one
of the alternative analyses that the experimenters assumed for the ambiguity. The syntactic
model correctly parses between 32% and 83% of items across the eight studies, with a
median of 57%. From these items, we further exclude items that cannot be processed by the
semantic plausibility model because the target verb is unseen in training. Final coverage
is between 27% and 75% of all items, with a median of 42%. For 80% of these items, the
semantic model prefers one of the syntactic analyses assumed by the experimenters. For
the remainder, it supports alternative analyses that either were not assumed present by the
experimenters or are syntactic misparses.

In addition to the predictions by the SynSem-Integration model, we also report the
predictions made by a head-head lexicalized probabilistic-grammar based model. This model
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serves as an informed baseline for the SynSem-Integration model’s performance. It has the
same syntactic information as the SynSem-Integration model’s syntax model and can also
use information on the co-occurrence of lexical heads in syntactic configurations to evaluate
alternative parses. We use the head-head lexicalized grammar derived from the Penn Tree-
bank that is described in Section 3.1 above. This model predicts difficulty whenever the
best syntactic parse at the current time step is not a monotonic extension of the best parse
at the last time step.

The experimental observations and the predictions of the models are again scaled
as described in Section 3.3 above to reflect the proportion of overall processing difficulty
contributed by each region. For each condition, we sum the observed or predicted difficulty
over all regions and normalize each region’s difficulty by the total. In the case of negative
observed difficulty, we first move all observations for the affected condition into positive
space by adding a constant value chosen to bring the lowest negative value to 1. This
transformation preserves the relative position of the data points and allows us to apply the
standard scaling procedure.

We evaluate both models’ predictions by correlating the predicted and observed pat-
terns of difficulty using Spearman’s p, since the use of a parametric correlation test is not
justified for all data sets.

3.5.2. The MC/RR ambiguity.

The influence of thematic fit on the processing of this ambiguity, introduced above in
Section 3.2, was investigated, among others, by MacDonald (1994) and McRae et al. (1998).
Both studies manipulated the thematic fit of the first NP with the verb as an agent or patient
(varying pirate in the sentence The pirate terrorized by his captors was freed quickly with
victim), testing whether a good agent like pirate biases readers towards the ultimately wrong
main clause interpretation, while a good patient like wictim might bias them towards the
reduced relative reading.

MacDonald (1994), in her Experiment 2, also varied the number of possible analyses
in the ambiguous region through the amount of disambiguating information present in post-
verbal constituents Sentences (3-a) to (3-d) show a complete item set with all manipulations.

(3) a. The news stated that the microfilm concealed inside the secret passageway was

discovered. (Good Patient/Early Disambiguation)

b. The news stated that the microfilm concealed most of the night was discovered.
(Good Patient/Late Disambiguation)

c. The news stated that the spy concealed inside the secret passageway was discov-
ered. (Poor Patient/Early Disambiguation)

d.  The news stated that the spy concealed most of the night was discovered. (Poor
Patient/Late Disambiguation)

The manipulation of post-verbal material consisted of varying the point at which the post-
verbal phrases excluded a transitive main clause continuation of the sentences, thereby pro-
moting the reduced relative meaning. Early Disambiguation materials as in (3-a) and (3-¢)
made this obvious at the first post-verbal word. Late Disambiguation materials as in (3-b)
and (3-d) reliably excluded the transitive main clause only at the third or fourth word (most
of the could still be continued to be a direct object, for example as most of the documents),
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Figure 5. McRae et al. 1998: Experimental results and model predictions for the MC/RR ambi-
guity. GA: Good agent first NP, GP: Good patient first NP.

giving the reader more time to entertain the initially preferred main clause hypothesis.

MacDonald (1994) found that a combination of good patient first NP and early dis-
ambiguation post-verbal material (both pointing towards the reduced relative) eliminated
the difficulty at the disambiguating main verb. When the two information sources pointed
towards different interpretations, she found some indication of difficulty at the disambigua-
tion. When both information sources pointed towards a main clause, readers had significant
difficulty at the disambiguating main verb.

McRae et al. (1998) used agentive by-phrases as post-verbal material, which corre-
sponds to MacDonald’s Early Disambiguation condition. They presented two words at a
time and measured self-paced reading. They also found an influence of thematic fit: Readers
found it harder to process ambiguous sentences with good patients at the verb+by region,
where the good patients are implausible agents in the preferred main clause interpretation,
but at the main verb, which disambiguates towards the dispreferred reduced relative inter-
pretation, the good agent sentences were harder. We present the modeling results for this
study below.

Qualitative Analysis We present modeling results for the McRae et al. data set, our
running example in this paper. The reading time data was measured on the regions verb+by,
agent NP and main verb. We make predictions for the verb and by separately, since both
words contain cues for the processing system. The other regions are retained without mod-
ification. We plot the observed data both with the SynSem-Integration model’s predictions
(in Fig. 5) and with the baseline model predictions (in Fig. 6).

The SynSem-Integration model (gray lines in Fig. 5) predicts that stimuli with good
patients should be harder to read at the verb than stimuli with good agents, because good
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Figure 6. McRae et al. 1998: Experimental results and baseline predictions for the MC/RR
ambiguity. GA: Good agent first NP, GP: Good patient first NP

patients introduce a conflict between the syntactic preference for the main clause reading
and the semantic preference for the reduced relative. At by, both conditions are predicted to
be similarly difficult, and in the agent NP region, our model predicts more difficulty for the
good agent sentences than for the good patients. This reflects the revision of the previously
well-supported main clause readings as the disambiguating region unfolds. At the main verb,
our model predicts equally low difficulty for both conditions, most of the revision having
taken place in the previous two regions.

We find these predictions mirrored in the experimental results, but one region late.
Recall that the first experimental region combines the first and second region for which our
model makes predictions (verb-+by). In this long region, we see the difficulty with good
patient sentences that was predicted by the model to be encountered at the verb. In the
next region, difficulty for good agent and good patient sentences is relatively similar (the
difference is not significant in the experimental results). Finally, good agent sentences prove
to be significantly harder than good patient sentences. The discrepancy in timing between
the model predictions and the observed data are presumably caused by two factors: First,
the conflation of verb and by in the measurements, which makes it hard to exactly identify
the onset of the difficulty with good agents, and second a spillover effect (Just, Carpenter, &
Woolley, 1982), a phenomenon frequently found with self-paced reading data, where effects
show or linger a region or two after their hypothesized onset.

The predictions of the syntactic baseline (see Fig. 6) are notably dissimilar from the
observed data. The baseline model makes exactly the same predictions for both plausibility
conditions, which is to be expected given our observations about the sparseness of head-
head co-occurrence information that could yield clues to semantic plausibility. The model
predicts a large amount of difficulty at the by-phrase followed by a smaller amount at the
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main verb. This distribution clearly reflects the difficulty encountered in purely syntactic
processing: After an initial preference for the more frequent main clause interpretation,
most stimuli are analyzed as containing a reduced relative at by, and the remainder switches
the preferred analysis towards a reduced relative at the disambiguating main verb. The
SynSem-Integration model’s modulation of this general pattern by thematic fit effects more
closely reflects the observed human behavior.

3.6. The NP/S ambiguity

The NP/S ambiguity results from the possibility to interpret a post-verbal NP as a
direct object or as the subject of an embedded sentence complement, as in the example
sentences (4-a) and (4-b) (from Pickering, Traxler, & Crocker, 2000).

(4) a. The criminal confessed his sins and reformed.
b. The criminal confessed his sins harmed too many people.

In sentence (4-a), his sins is a direct object in a main clause, but in the sentence complement
reading shown in (4-b), the NP is part of an embedded sentence complement. Disambigua-
tion towards the sentence complement reading follows immediately at the next word after the
NP. In this ambiguity, readers usually initially interpret the second NP as the direct object
of the main verb and show difficulty at a disambiguation towards the sentential complement
interpretation.

Pickering and Traxler (1998) varied the thematic fit of the ambiguous NP as a direct
object of the verb. Their eye-tracking study found an influence of thematic fit both on the
ambiguous NP and at the disambiguation. Ambiguous NPs that made implausible direct
objects were harder to read than plausible ones, and the disambiguation was harder to read
after seeing a plausible ambiguous NP (that biases towards the ultimately incorrect object
interpretation) than after seeing an implausible one.

Garnsey et al. (1997) varied the plausibility of the ambiguous NP as well as the sub-
categorization preference of the verb. They used verbs that prefer a sentential complement
(SC verbs), verbs that prefer an NP argument (DO verbs) and verbs that are equibiased
(EQ verbs, our development set). Sentences (5-a) and (5-b) are an example of DO and SC
bias stimuli, which we model for evaluation.

(5) a. The director confirmed the rumor should have been stopped earlier. (Good

object, DO-preferring verb)

b. The director confirmed the money should have been managed better. (Bad
object, DO-preferring verb)

c.  The agent admitted the mistake had been careless. (Good object, SC-preferring
verb)

d.  The agent admitted the airplane had been late taking off. (Bad object, SC-
preferring verb)

Garnsey et al.’s eye tracking study found no significant effect of plausibility on SC-biased
verbs for the total time measure we model, but there was some indication of difficulty when
participants read the disambiguation region in the DO condition for stimuli with plausible
object NPs. These NPs initially support the direct object hypothesis which is contradicted
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Figure 7. Garnsey et al. 1997: Experimental results and model predictions for the NP /S ambiguity.
Left: Direct Object preference, right: Sentential Complement preference. Bad Obj: Bad NP object,
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guity. Left: Direct Object preference, right: Sentential Complement preference. Bad Obj: Bad NP
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at the disambiguation.

Qualitative Analysis Fig. 7 shows our model’s predictions for Garnsey et al.’s direct
object and sentential complement conditions. For the direct object preference condition (on
the left), our model predicts that stimuli with NPs that are implausible direct objects should
be hard to process at the NP, but much easier at the main verb, which shows them not to
be direct objects of the first verb at all. Inversely, good direct object stimuli should be easy
to process at the NP, but harder at the disambiguation.

For the sentential complement condition (Fig. 7, right), the SynSem-Integration model
predicts a similar interaction, with an especially extreme distribution of difficulty for the
implausible object NPs. For both conditions, the observations follow a very similar pattern
to the predictions.

The baseline model’s predictions are shown in Fig. 8. They verify again that this
model lacks sufficient thematic fit information: The baseline model predicts no difference
between the conditions for the direct object bias verbs, and the small predicted difference
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Figure 9. Pickering, Traxler and Crocker 2000: Left: Experimental results and model predictions
for the NP/0 ambiguity. Right: Experimental results and baseline predictions. Bad object reading
times minus Good object reading times.

for the sentential complement verbs trends in the wrong direction.

3.7. The NP/0 ambiguity

The NP /0 ambiguity also centers around the interpretation of an ambiguous NP. This
NP can either serve as a direct object to a verb in an adverbial clause which precedes a main
clause, as in (6-a) (the NP alternative), or as the subject of the main clause, as in (6-b),
where it stands in no relation to the verb in the adverbial clause (the 0 case, from Pickering
& Traxler, 1998).

(6) a. While the woman was editing the magazine it started to rain.
b.  While the woman was editing the magazine amused the reporters.

When processing this ambiguity, readers usually interpret the ambiguous NP as the direct
object of the verb and show difficulty when it is disambiguated towards being the subject
of the main clause.

Pickering and Traxler (1998) manipulated the thematic fit of the ambiguous NP as a
direct object of the verb. Their eye-tracking study found a clear influence of thematic fit.
For the total reading time measure, significant effects were found both on the ambiguous NP
and at the disambiguation, such that implausible ambiguous NPs were harder to read than
plausible ones, but caused less processing difficulty than plausible NPs at the disambiguation
towards the 0 alternative.

Pickering et al. (2000) investigated the case of optionally transitive verbs with a strong
intransitive bias in addition to manipulating thematic fit, using stimuli like (7-a) and (7-b).

(7) a. While the pilot was flying the plane stood over by the fence.
b.  While the pilot was flying the horse stood over by the fence.

The total time findings for each region from their eye-tracking study show that reading time
was longer on the NP for implausible object stimuli, while on the verb, reading time was
shorter for these stimuli.
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Qualitative Analysis We present results for the Pickering et al. (2000) study. Since
there is no way to construct a syntactically unambiguous control condition for the NP /0
ambiguity, Pickering et al. compare the reading times for the good object conditions to the
reading times for the bad object conditions. The plots of observed and predicted difficulty
in Fig. 9 therefore represent the relative difficulty of good objects as opposed to bad objects.
They show the scaled difference between the reading times for good object sentences from
the reading times for bad object sentences.

Our model correctly predicts that good objects should be easy to read in comparison
to bad objects at the ambiguous NP (Fig. 9, left-hand side), and that bad objects in contrast
should be hard to read in comparison with good objects at the disambiguation. The syntactic
baseline again predicts no difference in difficulty between the semantic conditions (Fig. 9,
right-hand side). This manifests as a straight line on the abscissa on the right-hand graph
in Fig. 9.

3.8. The PP-attachment ambiguity

A PP-Attachment ambiguity usually arises in utterances like (8-a) and (8-b) from
Rayner et al. (1983), where the attachment of the prepositional phrase with binoculars or
with a revolver is possible both to the main verb (see with binoculars) and to the object NP
(cop with binoculars).

(8) a. The spy saw the cop with binoculars.
b. The spy saw the crook with a revolver.

The PP-Attachment ambiguity is syntactically a global ambiguity: There is no way of
unambiguously specifying the attachment site. However, semantic plausibility disambiguates
the attachment of with a revolver to the crook in (8-b) and makes the attachment of with
binoculars to see vastly more plausible than to cop. This means has been used to investigate
the preferred initial attachment in the processing of this ambiguity.

Rayner et al. (1983) assumed that the verb attachment alternative is the syntactically
simpler one and, following the parsing principle of Minimal Attachment (Frazier, 1978),
hypothesized a global attachment preference to the verb. The total reading time measure
recorded in their eye tracking study indeed shows that readers took longer to read the noun
in the PP if it was biased towards NP attachment rather than verb attachment.

Taraban and McClelland (1988) assumed the existence of a verb-specific attachment
bias rather than a global parsing principle. They identified a verb bias for PP attachment in
the Rayner et al. stimuli, and added an equal number of stimuli with verbs biased against PP
attachment. We modeled self-paced reading times from Experiment 1A, where the findings
from Rayner et al. were replicated for their stimuli, while the new Taraban and McClelland
items showed the opposite pattern, supporting the assumption that attachment preferences
are verb-specific.

We present results for the Rayner et al. (1983) study because the Taraban and Mc-
Clelland (1988) study yields only two data points in a single region.

Qualitative Analysis Fig. 10 shows modeling results for the Rayner et al. (1983) study.
Since no syntactically unambiguous controls can be constructed for the PP-Attachment
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Figure 10. Rayner and Frazier 1983: Left: Experimental results and model predictions for the
PP-Attachment ambiguity. Right: Experimental results and baseline predictions. Noun attachment
reading times minus verb attachment reading times.

Table 6: Correlations between model predictions and observations (Spearman’s p).

All Data No Garnsey et al.
Model N p? N p?
Baseline 36 -0.246, ns 28 -0.276, ns

Rank/If-Worse 36  0.714, *** 28 (.704, ***
Fixed/If-Worse 36  0.743, *** 28 (.694, ***
Ratio/Ratio 36 0.551, 28 0.412, *

ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001

ambiguity, we again use the difference between the attachment conditions as an indication
of relative difficulty with the conditions. The plots in Fig. 10 show the scaled difference
between predicted or observed difficulty in the NP attachment condition and predicted or
observed difficulty in the verb attachment condition.

Rayner et al.  (1983) measured reading difficulty in two regions: On the
NP-+preposition (the crook with), and on the NP that completes the prepositional phrase (a
revolver). The SynSem-Integration model predicts that there should be little difference in
difficulty between the conditions on the NP+preposition material that is identical in both
conditions. At the noun in the PP, the model predicts that the NP attachment condition
should cause more difficulty than the verb attachment condition, as indicated by the positive
direction of the plotted predictions. The SynSem-Integration model’s predictions correspond
almost exactly to the pattern found in the data.

The syntactic baseline model predicts that when the NP within in the PP is read, NP
attachment will be much easier than verb attachment, leading to a large negative difference
in difficulty. This prediction is due to chance noise: The parser only predicts difficulty for a
single stimulus in a single region.
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3.9. Quantitative evaluation

Our quantitative evaluation of the SynSem-Integration model was carried out against
observations from the above-mentioned eight reading-time studies investigating four phe-
nomena. The model’s predictions were computed as described in Section 3.5. Evaluation
was done by correlation analysis (Spearman’s p) between the predicted and observed data
points for each study. Table 6 shows an analysis across the pooled data from all modeled
studies. We present the baseline results and the performance of the Rank/If-Worse model,
which uses the best parametrization on the development set, as well as the other two well-
performing parametrizations to demonstrate the model’s robustness across parametrizations.

The correlation analysis is significant with a correlation coefficient of about 0.7 for the
Rank /If-Worse model. The coarser-grained Fixed/If-Worse cost functions even do slightly
better than this, while the finer-grained Ratio/Ratio cost functions prove to be very sensitive
to the noise inherent in our probabilistic models at a correlation coefficient of p = 0.551.
In contrast, the syntactic baseline model does not achieve a significant correlation with the
observed data.

One reservation about the pooled analysis as a measure of the model’s general perfor-
mance might be that it includes the two NP /S data sets from Garnsey et al., the study that
furnished the development set. One might argue that optimizing on one data subset from a
study makes it likely that the other data subsets from this study will also be optimized in-
directly. The right section of Table 6 presents the correlation results for the overall analysis
without using the Garnsey et al. data sets. The difference in correlation coefficients is not
statistically significant for any of the models (all p > 0.4, two-tailed, using Raghunathan’s
(2003) test which allows for missing values).

3.9.1. Discussion.

The quantitative and qualitative analyses of the SynSem-Integration model’s pre-
dictions have demonstrated its reliability. The model clearly outperformed a lexicalized
syntax-only model, which, presumably due to sparse data problems, failed to predict the
influence of thematic fit on human sentence processing. This result highlights the impor-
tance of the explicit, independently motivated model of semantic plausibility employed in
the SynSem-Integration model.

The SynSem-Integration model is able to predict the patterns of human processing
difficulty for four well-studied phenomena with unchanged parameter settings and without
per-phenomenon adaptations. The SynSem-Integration model completely eliminates the
problem of hand-selecting and hand-setting constraints for individual phenomena. Its com-
ponent models, especially the syntactic model, account for a large amount of constraints
typically used in constraint-integration models, for example word form or sentence structure
preferences. This information is incorporated in a single comprehensive model of lexical and
syntactic frequencies that is trained once on a single data set. This model has the advantage
of being general enough to contain the relevant information for a large number of phenom-
ena. At the same time, it ensures that no potentially important preference information is
neglected.

The quantitative evaluation of three different combinations of cost functions has
demonstrated the SynSem-Integration model’s robustness given per-item predictions of dif-
ferent grain size. In the face of noise in the model and the data, the least fine-grained
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cost functions performed best. Importantly, all three variants of the model reliably predict
patterns of processing difficulty, and clearly outperform the baseline model.

4. General discussion

We have presented the SynSem-Integration model of human sentence processing. This
model extends the standard probabilistic grammar-based account of syntactic processing
with a model of human thematic plausibility intuitions. The model is therefore able to
account for syntactic and semantic effects in human sentence processing, while retaining the
main advantages of probabilistic grammar-based models, namely their ability to naturally
account for frequency effects and their wide coverage of syntactic phenomena and unseen
input. The model is to a large extent derived automatically from training data, which
obviates the need for experimenter intervention and grounds the model’s predictions in
naturalistic language data. This is an advantage of our model over constraint-based accounts,
where the set of relevant constraints has to be specified by hand for each new phenomenon
to be modeled. Note that a large number of constraints used in constraint-based accounts,
such as structural and lexical preferences, are covered by the probabilistic grammar in the
syntactic model in a unified and homogeneous way. Further, the SynSem-Integration model
is the first to employ a model of human plausibility intuitions (instantiated as verb-argument
thematic fit), which allows wide coverage of unseen input.

Our evaluation has shown that both the plausibility model that we have proposed
and the SynSem-Integration model reliably predict human data. The plausibility model
predicts human verb-argument-role plausibility judgments, showing wide coverage of unseen
verb-argument-role triples and reliable predictions for both seen and unseen data points.
The SynSem-Integration model’s predictions have been evaluated against results from eight
experimental studies and across four ambiguity phenomena. We have presented qualitative
results for each phenomenon and have shown that the model’s predictions are significantly
correlated with observed human processing difficulty across all phenomena. This demon-
strates the model’s generality and robustness.

We now turn to discussing the theoretical implications of our model’s implementation.
The model consists of a syntactic and a semantic model, which co-operate to determine a
globally preferred analysis of the input. The semantic model is assumed to operate on the
analyses created by the syntactic model. This modular architecture is an implementational
choice, and we do not make any specific claims with regard to its cognitive plausibility. Note
especially that our model is not a syntax-first approach, as it does not assume a temporal
disjunction between purely syntactic, lexical and semantic processing: The syntactic compo-
nent immediately integrates lexically-specific information (e.g., verb subcategorization and
word class preferences) and the semantic model processes and ranks the input within the
same time step as the syntactic model.

A second point concerns the implementation of the semantic plausibility model. We
have demonstrated that a probabilistic model enhanced with knowledge about semantic
generalizations can predict human semantic judgments. This model relies on descriptions
of events in a corpus to assess event plausibility. Human beings learn a lot about event
plausibility by observation, and not necessarily in verbal contexts. Hence using language
data to model plausibility is an indirect route. We use it in the absence of any other kind
of training data for event plausibilities, and with the additional justification that there is
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plausibility knowledge that is learned through the medium of language. For example, many
people would confirm that wizards are plausible agents of a jinxing event, even though it is
unlikely that they have directly witnessed such an event.

We operate on the assumption that there is a link between the plausibility of the
(partial) event denoted by a verb-argument-role triple and the frequency with which it
is encountered in a corpus. Of course, we cannot assume that corpus-based plausibility
estimates will be perfect, because humans usually make utterances with the goal of com-
municating information to a hearer. Corpus frequencies may be distorted for example if
commonplace events are not deemed worthy of explicit discussion, or if infrequent events
are perceived as more informative or interesting, and therefore are discussed more often than
they are experienced. In addition, data sparseness often turns a frequency estimate into a
seen-unseen classification in practice. However, we observed that verb-argument-relation
triples encountered in corpora were rated as significantly more plausible than unseen triples
in a previous norming study (Padd, 2007), indicating that events described in a corpus are
generally plausible. Our class-based smoothing approach attempts to distinguish between
events that are unseen, yet plausible, and those that are unseen and implausible. We take
the performance of our implemented semantic model as an indication that corpus data yields
sufficient information about verb-argument-role plausibility for successful modeling.

Finally, the parameter setting process for the SynSem-Integration model yielded two
interesting observations. Both are relevant to the prediction of Revision cost. The first is
that the model’s performance improves as the influence of the syntactic ranking on the global
ranking grows stronger. Which model dominates the global ranking does not influence the
Conflict cost function, as it only registers disagreement between the two models. However,
the predictions of the Revision cost function depend on which analysis is preferred initially.
If the preferred analysis is determined by syntactic preferences, the SynSem-Integration
model makes correct predictions about difficulty due to Revision. If the preferred analysis
is determined by semantic plausibility, the model’s predictions do not match the observed
difficulty. This appears to imply that plausibility information modulates, but does not
strongly determine, the preferred syntactic structure in processing. Studies investigating
the influence of thematic fit on parsing indeed regularly find that thematic fit information
weakens, but does not eliminate Revision effects at disambiguation (e.g., Ferreira & Clifton,
1986; McRae et al., 1998; Clifton et al., 2003).

The weakening of Revision difficulty due to thematic fit information is implemented
in the SynSem-Integration model by the If-Worse Revision cost function that only predicts
difficulty when the new interpretation is less semantically plausible than the revised interpre-
tation. This means that no difficulty is predicted on the item level if the change of preferred
interpretation makes semantic sense. Our exploration of the parameter space showed that
only models using this cost function were able to predict the correct pattern of difficulty in
the experimental data. Note that the preference for this cost function does not mean that
the model assigns no difficulty at all in a condition with a semantic bias towards the disam-
biguated reading. Due to noise in the items and in the semantic model, this cost function
results in a reduced, but not a zero difficulty prediction.

Taken together, the cost functions of the SynSem-Integration model thus predict a
situation in which semantic information is used to continually (and simultaneously) evaluate
syntactic decisions, but in which it does not immediately determine the syntactic analysis of
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the input that the processor entertains. This description is realistic given empirical findings
of both semantic effects during the processing of an ambiguity (Trueswell, Tanenhaus, &
Garnsey, 1994; McRae et al., 1998) and the observation that thematic fit does not necessarily
suffice to cancel out Revision effects at disambiguation.

One possible limitation to our model is the combination of two cost functions for
difficulty prediction, where competition-based models such as Spivey-Knowlton’s (1996) use
only one. This is due to our decision to extend Jurafsky-style probabilistic grammar-based
models, which, unlike constraint-based models, explain the construction of syntactic analyses
as well as the resolution of ambiguities. The difficulty prediction mechanism in these models
covers only Revision situations and cannot be easily adapted to also account for Conflict
situations. Similarly, the cost prediction mechanism from competition-based models does not
completely carry over to probabilistic grammar-based models. Note that while we propose
two cost functions, both ultimately compute the support that the globally preferred parse
has from previous linguistic experience (the component models) and assumptions based on
earlier processing stages.

We have presented a wide-coverage probabilistic model of thematic role assignment
and plausibility which is transparently integrated with a probabilistic lexico-syntactic pro-
cessor. While this model is able to account for a range of relevant judgment and reading time
data relating to semantic plausibility, there remain of course many dimensions of semantic
processing to be modeled. These include the role of discourse context for the resolution of
ambiguous references (e.g., Altmann & Steedman, 1988; Spivey & Tanenhaus, 1998), the ac-
commodation of definite versus indefinite NPs (Crain & Steedman, 1985; Spivey-Knowlton
& Sedivy, 1995), and the resolution of quantifier scope (Kurtzmann & MacDonald, 1993).
We leave it to future work to extend the model to further semantic phenomena, and explore
the scalability of the architecture.

References

Abney, S. (1989). A computational model of human parsing. Journal of Psycholinguistic Research,
18(1), 129 144.

Aitchison, J. (2003). Words in the mind: An introduction to the mental lexicon (third ed.). Oxford
and New York: Basil Blackwell.

Altmann, G., & Steedman, M. (1988). Interaction with context during human sentence processing.
Cognition, 30, 191 238.

Baker, C., Fillmore, C., & Lowe, J. (1998). The Berkeley FrameNet project. In Proceedings
of the joint international conference on computational linguistics and annual meeting of the
association for computational linguistics (COLING/ACL) (pp. 86 90). East Stroudsburg, PA:
Association for Computational Linguistics.

Bikel, D. (2004). Intricacies of Collins’ parsing model. Computational Linguistics, 30(4), 479 511.

Boston, M. F., Hale, J., Kliegl, R., Patil, U., & Vasishth, S. (2008). Parsing costs as predictors of
parsing difficulty: An evaluation using the Potsdam sentence corpus. Journal of Eye Movement
Research. (To appear.)

Burnard, L. (1995). User’s guide for the British National Corpus. Oxford.

Carlson, G. (1984). Thematic roles and their role in semantic interpretation. Linguistics, 22,
259-279.

Carlson, G., & Tanenhaus, M. (1988). Thematic roles and language comprehension. In W. Wilkins
(Ed.), Thematic relations (Vol. 21). New York: Academic Press.



MODELING SEMANTIC PLAUSIBILITY IN SENTENCE PROCESSING 40

Carreras, X., & Marquez, L. (2005). Introduction to the CoNLL-2005 shared task: Semantic role
labeling. In Proceedings of the conference on computational natural language learning (CoNLL)
(pp- 152 164). East Stroudsburg, PA: Association for Computational Linguistics.

Chater, N., & Manning, C. D. (2006). Probabilistic models of language processing and acquisition.
Trends in Cognitive Science, 10(7), 335 344.

Clark, S., & Weir, D. (2002). Class-based probability estimation using a semantic hierarchy. Com-
putational Linguistics, 28(2), 187-206.

Clifton, C., Traxler, M., Mohamed, M. T., Williams, R., Morris, R., & Rayner, K. (2003). The use
of thematic role information in parsing: Syntactic autonomy revisited. Jouwrnal of Memory
and Language, 49, 317-334.

Collins, M. (1996). A new statistical parser based on bigram lexical dependencies. In Proceedings
of the annual meeting of the association for computational linguistics (ACL) (pp. 184 191).
East Stroudsburg, PA: Association for Computational Linguistics.

Crain, S., & Steedman, M. (1985). On not being led up the garden path: The use of context by
the psychological syntax processor. In D. Dowty, L. Karttunen, & A. Zwicky (Eds.), Natural
language parsing (pp. 320 358). Cambridge, UK: Cambridge University Press.

Crocker, M. W. (1996). Computational psycholinguistics: An interdisciplinary approach to the study
of language. Dordrecht: Kluwer Academic Publishers.

Crocker, M. W. (2005). Rational models of comprehension: Addressing the performance paradox.
In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 363—380).
London: Lawrence Erlbaum Associates.

Crocker, M. W., & Brants, T. (2000). Wide-coverage probabilistic sentence processing. Journal of
Psycholinguistic Research, 29(6), 647-669.

Crocker, M. W., & Corley, S. (2002). Modular architectures and statistical mechanisms: The case
from lexical category disambiguation. In P. Merlo & S. Stevenson (Eds.), The lexical basis of
sentence processing. Amsterdam: John Benjamins.

Cuetos, F., Mitchell, D., & Corley, M. (1996). Parsing in different languages. In M. Carreiras,
J. Garcia-Albea, & N. Sebastian-Gallés (Eds.), Language processing in Spanish (pp. 156 187).
Hillsdale, NJ: Lawrence Erlbaum.

Dagan, 1., Pereira, F., & Lee, L. (1994). Similarity-based estimation of word cooccurrence proba-
bilities. In Proceedings of the annual meeting of the association for computational linguistics
(ACL) (pp. 272 278). East Stroudsburg, PA: Association for Computational Linguistics.

Demberg, V., & Keller, F. (2008). Data from eye tracking corpora as evidence for theories of
syntactic processing complexity. Cognition. (To appear.)

Fellbaum, C. (Ed.). (1998). Wordnet An electronic lezical database. Cambridge, MA: MIT Press.

Ferreira, F., & Clifton, C. (1986). The independence of syntactic processing. Journal of Memory
and Language, 25, 348 368.

Fillmore, C. (1982). Frame semantics. In Linguistics in the morning calm (pp. 111-137). Seoul,
South Korea: Hanshin Publishing Co.

Fillmore, C., Johnson, C., & Petruck, M. (2003). Background to FrameNet. International Journal
of Lezicography, 16, 235-250.

Frazier, L. (1978). On comprehending sentences: Syntactic parsing strategies. Bloomington, IN:
Indiana University Linguistics Club.

Garnsey, S., Pearlmutter, N., Myers, E., & Lotocky, M. (1997). The contributions of verb bias and
plausibility to the comprehension of temporarily ambiguous sentences. Journal of Memory
and Language, 37, 58 93.

Gedeon, T., Parker, A., & Dimitrov, A. (2003). Information distortion and neural coding. Canadian
Applied Mathematics Quarterly, 10(1), 33-70.

Gibson, T. (1991). A computational theory of human linguistic processing: Memory limitations
and processing breakdown. Doctoral dissertation, Carnegie Mellon University. (UMI: AAT
9126944)



MODELING SEMANTIC PLAUSIBILITY IN SENTENCE PROCESSING 41

Gildea, D. (2001). Corpus variation and parser performance. In Proceedings of the conference on
empirical methods in natural language Processing (EMNLP) (pp. 167 202). East Stroudsburg,
PA: Association for Computational Linguistics: SIGDAT.

Gildea, D., & Jurafsky, D. (2002). Automatic labeling of semantic roles. Computational Linguistics,
28(3), 245 288.

Good, I. (1953). The population frequencies of species and the estimation of population parameters.
Biometrika, 40, 237-264.

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic model. In Proceedings of
the meeting of the North American chapter of the association for computational linguistics
(NAACL) (pp. 168-196). East Stroudsburg, PA: Association for Computational Linguistics.

Hindle, D., & Rooth, M. (1993). Structural ambiguity and lexical relations. Computational Lin-
guistics, 19, 103 120.

Jelinek, F., Laerty, J., Magerman, D., & Roukos, S. (1994). Decision tree parsing using a hidden
derivation model. In Proceedings of the 1994 human language technology workshop (pp. 272
277). San Francisco, CA: Morgan Kaufmann.

Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation.
Cognitive Science, 20, 137 194.

Jurafsky, D. (2003). Probabilistic modeling in psycholinguistics: Linguistic comprehension and
production. In R. Bod, J. Hay, & S. Jannedy (Eds.), Probabilistic linguistics. Cambridge,
MA: MIT Press.

Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension.
Psychological Review, 87, 329-354.

Just, M. A.; Carpenter, P. A., & Woolley, J. D. (1982). Paradigms and processes in reading
comprehension. Journal of Experimental Psychology: General, 3(2), 228-238.

Katz, S. (1987). Estimation of probabilities from sparse data for the language model component of
a speech recognizer. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(3)
400 401.

Kipper, K., Dang, H. T., & Palmer, M. (2000). Class-based construction of a verb lexicon. In
Proceedings of the national conference on artificial intelligence (AAAI) (pp. 691 696). Cam-
bridge, MA: AAAI Press / The MIT Press.

Kurtzmann, H., & MacDonald, M. (1993). Resolution of quantifier scope ambiguities. Cognition,
48, 243-279.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106, 1126-1177.

Lewis, R. L., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled
memory retrieval. Cognitive Science, 29, 1 45.

Litkowski, K. (2004). Senseval-3 task: Automatic labeling of semantic roles. In Proceedings of
Senseval-3: The third international workshop on the evaluation of systems for the semantic
analysis of text (pp. 9 12). East Stroudsburg, PA: Association for Computational Linguistics:
SIGLEX.

MacDonald, M. (1994). Probabilistic constraints and syntactic ambiguity resolution. Language and
Cognitive Processes, 9(2), 157 201.

Manning, C., & Schiitze, H. (1999). Foundations of statistical language processing. Cambridge, MA:
MIT Press.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1994). Building a large annotated corpus of
English: The Penn Treebank. Computational Linguistics, 19(2), 313 330.

Marx, Z. (2004). Structure-based computational aspects of similarity and analogy in natural language.
Doctoral dissertation, Hebrew University, Jerusalem.

Mayberry, M. R. (2003). Incremental nonmonotonic parsing through semantic self-organization.
Doctoral dissertation, University of Texas at Austin. (UMI: AAT 3116385)

McDonald, S., & Shillcock, R. (2003). Eye movements reveal the on-line computation of lexical
probabilities. Psychological Science, 14, 648—652.

3



MODELING SEMANTIC PLAUSIBILITY IN SENTENCE PROCESSING 42

McRae, K., Spivey-Knowlton, M., & Tanenhaus, M. (1998). Modeling the influence of thematic fit
(and other constraints) in on-line sentence comprehension. Journal of Memory and Language,
38, 283 312.

Medin, D. L., & Aguilar, C. (1999). Categorization. In R. A. Wilson & F. C. Keil (Eds.), The MIT
encyclopedia of the cognitive sciences (pp. 104-105). Cambridge, MA: MIT Press.

Narayanan, S., & Jurafsky, D. (2002). A Bayesian model predicts human parse preference and
reading time in sentence processing. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.),
Advances in neural information processing systems 14 (pp. 59-65). Cambridge, MA: MIT
Press.

Narayanan, S., & Jurafsky, D. (2005). A Bayesian model of human sentence processing. (MS,
available at: http://www.icsi.berkeley.edu/ snarayan/newcog.pdf. Accessed February
2006)

Pad6, U. (2007). The integration of syntax and semantic plausibility in a wide-coverage
model of human sentence processing. Doctoral dissertation, Saarland University. (URN:
urn:nbn:de:bsz:291-scidok-11381)

Pado, U., Crocker, M. W., & Keller, F. (2006). Modelling semantic role plausibility in human
sentence processing. In Proceedings of the meeting of the European chapter of the association
for computational lingustics (EACL) (pp. 345 352). East Stroudsburg, PA: Association for
Computational Linguistics.

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The Proposition Bank: An annotated corpus of
semantic roles. Computational Linguistics, 81(1), 71-105.

Parsons, T. (1990). Events in the semantics of English: A study in subatomic semantics. Cambridge,
MA: MIT Press.

Pickering, M., & Traxler, M. (1998). Plausibility and recovery from garden paths. Journal of
Ezperimental Psychology: Learning, Memory and Cognition, 24.

Pickering, M., Traxler, M., & Crocker, M. W. (2000). Ambiguity resolution in sentence processing:
Evidence against frequency-based accounts. Journal of Memory and Language, 43, 447 475.

Pritchett, B. (1992). Grammatical competence and parsing performance. Chicago, IL: The University
of Chicago Press.

Raghunathan, T. (2003). An approximate test for homogeneity of correlated correlations. Quality
and Quantity, 37, 99-110.

Rayner, K., Carlson, M., & Frazier, L. (1983). The interaction of syntax and semantics during
sentence processing: Eye movements in the analysis of semantically biased sentences. Journal
of Verbal Learning and Verbal Behaviour, 22, 358 374.

Resnik, P. (1996). Selectional constraints: An information-theoretic model and its computational
realization. Cognition, 61, 127 159.

Roark, B. (2001). Robust probabilistic predictive syntactic processing: Motivations, models, and
applications. Doctoral dissertation, Brown University. (UMIL: AAT 3006783)

Rohde, D. (2002). A connectionist model of sentence comprehension and production. Doctoral
dissertation, Carnegie Mellon University, Pittsburgh, PA. (UMI: AAT 3051010)

Spivey, M., & Tanenhaus, M. (1998). Syntactic ambiguity resolution in discourse: Modeling the
effects of referential context and lexical frequency. Journal of Experimental Psychology: Learn-
ing, Memory and Cognition, 24(6), 1521 1543.

Spivey-Knowlton, M. (1996). Integration of visual and linguistic information: Human data and
model simulations. Doctoral dissertation, University of Rochester. (UMI: AAT 9074332)

Spivey-Knowlton, M., & Sedivy, J. (1995). Parsing attachment ambiguities with multiple constraints.
Cognition, 55, 227 267.

Stevenson, S. (1994). Competition and recency in a hybrid network model of syntactic disambigua-
tion. Journal of Psycholinguistic Research, 23(4), 295-322.

Stowe, L. (1989). Thematic structures and sentence comprehension. In G. Carlson & M. Tanenhaus



MODELING SEMANTIC PLAUSIBILITY IN SENTENCE PROCESSING 43

(Eds.), Linguistic structure in language processing (pp. 319-357). Dordrecht; Boston: Kluwer
Academic Publishers.

Surdeanu, M., Harabagiu, S., Williams, J., & Aarseth, P. (2003). Using predicate-argument struc-
tures for information extraction. In Proceedings of the annual meeting of the association for
computational linguistics (ACL) (p. 9-16). East Stroudsburg, PA: Association for Computa-
tional Linguistics.

Taraban, R., & McClelland, J. (1988). Constituent attachment and thematic role assignment
in sentence processing: Influences of content-based expectations. Journal of Memory and
Language, 27, 597 632.

Tishby, N., Pereira, F. C., & Bialek, W. (1999). The Information Bottleneck method. In Proceedings
of the annual Allerton conference on communication, control and computing (pp. 368-377).
Urbana-Champaign, IL: University of Illinois.

Trueswell, J. (1996). The role of lexical frequency in syntactic ambiguity resolution. Journal of
Memory and Language, 35, 566 585.

Trueswell, J., Tanenhaus, M., & Garnsey, S. (1994). Semantic influences on parsing: Use of thematic
role information in syntactic ambiguity resolution. Journal of Memory and Language, 33, 285—
318.

Trueswell, J., Tanenhaus, M., & Kello, C. (1993). Verb-specific constraints in sentence processing:
Separating effects of lexical preference from garden-paths. Journal of Experimental Psychology:
Learning, Memory and Cognition, 19(3), 528-553.

Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: a computational
model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105—143.

Xue, N.; & Palmer, M. (2004). Calibrating features for semantic role labeling. In Proceedings
of the joint human language technology conference and conference on empirical methods in
natural language processing (HLT/EMNLP) (pp. 88 94). East Stroudsburg, PA: Association
for Computational Linguistics.



